sofia-todeschini commited on
Commit
6429944
1 Parent(s): f1121bc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: BioLinkBERT-Large-LitCovid-1.4
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # BioLinkBERT-Large-LitCovid-1.4
16
+
17
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5976
20
+ - Hamming loss: 0.0604
21
+ - F1 micro: 0.6804
22
+ - F1 macro: 0.5425
23
+ - F1 weighted: 0.7357
24
+ - F1 samples: 0.6807
25
+ - Precision micro: 0.5509
26
+ - Precision macro: 0.4271
27
+ - Precision weighted: 0.6552
28
+ - Precision samples: 0.5921
29
+ - Recall micro: 0.8895
30
+ - Recall macro: 0.8221
31
+ - Recall weighted: 0.8895
32
+ - Recall samples: 0.9063
33
+ - Roc Auc: 0.9165
34
+ - Accuracy: 0.1370
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 2e-05
54
+ - train_batch_size: 8
55
+ - eval_batch_size: 8
56
+ - seed: 42
57
+ - gradient_accumulation_steps: 4
58
+ - total_train_batch_size: 32
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 5
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
68
+ | 0.5869 | 1.0 | 1151 | 0.5737 | 0.0978 | 0.5682 | 0.4375 | 0.6759 | 0.5754 | 0.4172 | 0.3269 | 0.5906 | 0.4591 | 0.8901 | 0.8593 | 0.8901 | 0.9076 | 0.8966 | 0.0421 |
69
+ | 0.4636 | 2.0 | 2302 | 0.5316 | 0.0805 | 0.6179 | 0.4702 | 0.7052 | 0.6237 | 0.4704 | 0.3554 | 0.6181 | 0.5153 | 0.9005 | 0.8611 | 0.9005 | 0.9160 | 0.9107 | 0.0812 |
70
+ | 0.3782 | 3.0 | 3453 | 0.5382 | 0.0760 | 0.6321 | 0.4929 | 0.7146 | 0.6327 | 0.4864 | 0.3757 | 0.6293 | 0.5230 | 0.9027 | 0.8556 | 0.9027 | 0.9183 | 0.9142 | 0.0797 |
71
+ | 0.3031 | 4.0 | 4605 | 0.5807 | 0.0619 | 0.6754 | 0.5346 | 0.7343 | 0.6744 | 0.5437 | 0.4189 | 0.6531 | 0.5820 | 0.8915 | 0.8274 | 0.8915 | 0.9089 | 0.9166 | 0.1235 |
72
+ | 0.2625 | 5.0 | 5755 | 0.5976 | 0.0604 | 0.6804 | 0.5425 | 0.7357 | 0.6807 | 0.5509 | 0.4271 | 0.6552 | 0.5921 | 0.8895 | 0.8221 | 0.8895 | 0.9063 | 0.9165 | 0.1370 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.28.0
78
+ - Pytorch 2.3.0+cu121
79
+ - Datasets 2.20.0
80
+ - Tokenizers 0.13.3