sofia-todeschini
commited on
Commit
•
6429944
1
Parent(s):
f1121bc
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: BioLinkBERT-Large-LitCovid-1.4
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# BioLinkBERT-Large-LitCovid-1.4
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5976
|
20 |
+
- Hamming loss: 0.0604
|
21 |
+
- F1 micro: 0.6804
|
22 |
+
- F1 macro: 0.5425
|
23 |
+
- F1 weighted: 0.7357
|
24 |
+
- F1 samples: 0.6807
|
25 |
+
- Precision micro: 0.5509
|
26 |
+
- Precision macro: 0.4271
|
27 |
+
- Precision weighted: 0.6552
|
28 |
+
- Precision samples: 0.5921
|
29 |
+
- Recall micro: 0.8895
|
30 |
+
- Recall macro: 0.8221
|
31 |
+
- Recall weighted: 0.8895
|
32 |
+
- Recall samples: 0.9063
|
33 |
+
- Roc Auc: 0.9165
|
34 |
+
- Accuracy: 0.1370
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 2e-05
|
54 |
+
- train_batch_size: 8
|
55 |
+
- eval_batch_size: 8
|
56 |
+
- seed: 42
|
57 |
+
- gradient_accumulation_steps: 4
|
58 |
+
- total_train_batch_size: 32
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 5
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
|
68 |
+
| 0.5869 | 1.0 | 1151 | 0.5737 | 0.0978 | 0.5682 | 0.4375 | 0.6759 | 0.5754 | 0.4172 | 0.3269 | 0.5906 | 0.4591 | 0.8901 | 0.8593 | 0.8901 | 0.9076 | 0.8966 | 0.0421 |
|
69 |
+
| 0.4636 | 2.0 | 2302 | 0.5316 | 0.0805 | 0.6179 | 0.4702 | 0.7052 | 0.6237 | 0.4704 | 0.3554 | 0.6181 | 0.5153 | 0.9005 | 0.8611 | 0.9005 | 0.9160 | 0.9107 | 0.0812 |
|
70 |
+
| 0.3782 | 3.0 | 3453 | 0.5382 | 0.0760 | 0.6321 | 0.4929 | 0.7146 | 0.6327 | 0.4864 | 0.3757 | 0.6293 | 0.5230 | 0.9027 | 0.8556 | 0.9027 | 0.9183 | 0.9142 | 0.0797 |
|
71 |
+
| 0.3031 | 4.0 | 4605 | 0.5807 | 0.0619 | 0.6754 | 0.5346 | 0.7343 | 0.6744 | 0.5437 | 0.4189 | 0.6531 | 0.5820 | 0.8915 | 0.8274 | 0.8915 | 0.9089 | 0.9166 | 0.1235 |
|
72 |
+
| 0.2625 | 5.0 | 5755 | 0.5976 | 0.0604 | 0.6804 | 0.5425 | 0.7357 | 0.6807 | 0.5509 | 0.4271 | 0.6552 | 0.5921 | 0.8895 | 0.8221 | 0.8895 | 0.9063 | 0.9165 | 0.1370 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.28.0
|
78 |
+
- Pytorch 2.3.0+cu121
|
79 |
+
- Datasets 2.20.0
|
80 |
+
- Tokenizers 0.13.3
|