sofia-todeschini
commited on
Commit
•
c9acf34
1
Parent(s):
95ab72a
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: BioLinkBERT-LitCovid-1.4
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# BioLinkBERT-LitCovid-1.4
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5613
|
20 |
+
- Hamming loss: 0.0775
|
21 |
+
- F1 micro: 0.6253
|
22 |
+
- F1 macro: 0.4797
|
23 |
+
- F1 weighted: 0.7043
|
24 |
+
- F1 samples: 0.6321
|
25 |
+
- Precision micro: 0.4806
|
26 |
+
- Precision macro: 0.3631
|
27 |
+
- Precision weighted: 0.6169
|
28 |
+
- Precision samples: 0.5276
|
29 |
+
- Recall micro: 0.8947
|
30 |
+
- Recall macro: 0.8442
|
31 |
+
- Recall weighted: 0.8947
|
32 |
+
- Recall samples: 0.9099
|
33 |
+
- Roc Auc: 0.9097
|
34 |
+
- Accuracy: 0.0849
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 2e-05
|
54 |
+
- train_batch_size: 16
|
55 |
+
- eval_batch_size: 16
|
56 |
+
- seed: 42
|
57 |
+
- gradient_accumulation_steps: 2
|
58 |
+
- total_train_batch_size: 32
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 5
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
|
68 |
+
| 0.6654 | 1.0 | 1151 | 0.6313 | 0.1143 | 0.5259 | 0.3963 | 0.6460 | 0.5359 | 0.3756 | 0.2909 | 0.5586 | 0.4182 | 0.8764 | 0.8497 | 0.8764 | 0.8940 | 0.8814 | 0.0227 |
|
69 |
+
| 0.5313 | 2.0 | 2303 | 0.5682 | 0.0997 | 0.5655 | 0.4266 | 0.6717 | 0.5784 | 0.4128 | 0.3161 | 0.5789 | 0.4624 | 0.8972 | 0.8620 | 0.8972 | 0.9120 | 0.8988 | 0.0492 |
|
70 |
+
| 0.4594 | 3.0 | 3454 | 0.5529 | 0.0884 | 0.5938 | 0.4517 | 0.6907 | 0.6012 | 0.4446 | 0.3394 | 0.6041 | 0.4883 | 0.8939 | 0.8549 | 0.8939 | 0.9094 | 0.9034 | 0.0586 |
|
71 |
+
| 0.3966 | 4.0 | 4606 | 0.5580 | 0.0797 | 0.6193 | 0.4739 | 0.7014 | 0.6245 | 0.4731 | 0.3579 | 0.6129 | 0.5166 | 0.8965 | 0.8476 | 0.8965 | 0.9109 | 0.9093 | 0.0751 |
|
72 |
+
| 0.3693 | 5.0 | 5755 | 0.5613 | 0.0775 | 0.6253 | 0.4797 | 0.7043 | 0.6321 | 0.4806 | 0.3631 | 0.6169 | 0.5276 | 0.8947 | 0.8442 | 0.8947 | 0.9099 | 0.9097 | 0.0849 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.28.0
|
78 |
+
- Pytorch 2.3.0+cu121
|
79 |
+
- Datasets 2.20.0
|
80 |
+
- Tokenizers 0.13.3
|