sofia-todeschini commited on
Commit
c9acf34
1 Parent(s): 95ab72a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: BioLinkBERT-LitCovid-1.4
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # BioLinkBERT-LitCovid-1.4
16
+
17
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5613
20
+ - Hamming loss: 0.0775
21
+ - F1 micro: 0.6253
22
+ - F1 macro: 0.4797
23
+ - F1 weighted: 0.7043
24
+ - F1 samples: 0.6321
25
+ - Precision micro: 0.4806
26
+ - Precision macro: 0.3631
27
+ - Precision weighted: 0.6169
28
+ - Precision samples: 0.5276
29
+ - Recall micro: 0.8947
30
+ - Recall macro: 0.8442
31
+ - Recall weighted: 0.8947
32
+ - Recall samples: 0.9099
33
+ - Roc Auc: 0.9097
34
+ - Accuracy: 0.0849
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 2e-05
54
+ - train_batch_size: 16
55
+ - eval_batch_size: 16
56
+ - seed: 42
57
+ - gradient_accumulation_steps: 2
58
+ - total_train_batch_size: 32
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 5
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
68
+ | 0.6654 | 1.0 | 1151 | 0.6313 | 0.1143 | 0.5259 | 0.3963 | 0.6460 | 0.5359 | 0.3756 | 0.2909 | 0.5586 | 0.4182 | 0.8764 | 0.8497 | 0.8764 | 0.8940 | 0.8814 | 0.0227 |
69
+ | 0.5313 | 2.0 | 2303 | 0.5682 | 0.0997 | 0.5655 | 0.4266 | 0.6717 | 0.5784 | 0.4128 | 0.3161 | 0.5789 | 0.4624 | 0.8972 | 0.8620 | 0.8972 | 0.9120 | 0.8988 | 0.0492 |
70
+ | 0.4594 | 3.0 | 3454 | 0.5529 | 0.0884 | 0.5938 | 0.4517 | 0.6907 | 0.6012 | 0.4446 | 0.3394 | 0.6041 | 0.4883 | 0.8939 | 0.8549 | 0.8939 | 0.9094 | 0.9034 | 0.0586 |
71
+ | 0.3966 | 4.0 | 4606 | 0.5580 | 0.0797 | 0.6193 | 0.4739 | 0.7014 | 0.6245 | 0.4731 | 0.3579 | 0.6129 | 0.5166 | 0.8965 | 0.8476 | 0.8965 | 0.9109 | 0.9093 | 0.0751 |
72
+ | 0.3693 | 5.0 | 5755 | 0.5613 | 0.0775 | 0.6253 | 0.4797 | 0.7043 | 0.6321 | 0.4806 | 0.3631 | 0.6169 | 0.5276 | 0.8947 | 0.8442 | 0.8947 | 0.9099 | 0.9097 | 0.0849 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.28.0
78
+ - Pytorch 2.3.0+cu121
79
+ - Datasets 2.20.0
80
+ - Tokenizers 0.13.3