sofia-todeschini commited on
Commit
bda564d
1 Parent(s): 078b9d1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: Bioformer-LitCovid-v1.4h
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # Bioformer-LitCovid-v1.4h
16
+
17
+ This model is a fine-tuned version of [bioformers/bioformer-litcovid](https://huggingface.co/bioformers/bioformer-litcovid) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5733
20
+ - Hamming loss: 0.0842
21
+ - F1 micro: 0.6047
22
+ - F1 macro: 0.4622
23
+ - F1 weighted: 0.6887
24
+ - F1 samples: 0.6127
25
+ - Precision micro: 0.4576
26
+ - Precision macro: 0.3466
27
+ - Precision weighted: 0.5990
28
+ - Precision samples: 0.5038
29
+ - Recall micro: 0.8912
30
+ - Recall macro: 0.8446
31
+ - Recall weighted: 0.8912
32
+ - Recall samples: 0.9055
33
+ - Roc Auc: 0.9044
34
+ - Accuracy: 0.0708
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 5.451682398151845e-05
54
+ - train_batch_size: 32
55
+ - eval_batch_size: 32
56
+ - seed: 42
57
+ - gradient_accumulation_steps: 2
58
+ - total_train_batch_size: 64
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.08129918921555689
62
+ - num_epochs: 5
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
68
+ | 0.9164 | 1.0 | 576 | 0.6810 | 0.1510 | 0.4505 | 0.3468 | 0.6199 | 0.4653 | 0.3057 | 0.2568 | 0.5483 | 0.3450 | 0.8564 | 0.8656 | 0.8564 | 0.8750 | 0.8524 | 0.0078 |
69
+ | 0.6032 | 2.0 | 1152 | 0.5983 | 0.1154 | 0.5273 | 0.4002 | 0.6493 | 0.5373 | 0.3746 | 0.2939 | 0.5587 | 0.4139 | 0.8902 | 0.8651 | 0.8902 | 0.9050 | 0.8872 | 0.0263 |
70
+ | 0.4965 | 3.0 | 1728 | 0.5752 | 0.0975 | 0.5704 | 0.4372 | 0.6709 | 0.5795 | 0.4185 | 0.3237 | 0.5797 | 0.4617 | 0.8952 | 0.8536 | 0.8952 | 0.9089 | 0.8991 | 0.0479 |
71
+ | 0.4354 | 4.0 | 2304 | 0.5655 | 0.0863 | 0.5978 | 0.4554 | 0.6872 | 0.6050 | 0.4508 | 0.3406 | 0.6021 | 0.4948 | 0.8870 | 0.8503 | 0.8870 | 0.9024 | 0.9014 | 0.0636 |
72
+ | 0.3874 | 5.0 | 2880 | 0.5733 | 0.0842 | 0.6047 | 0.4622 | 0.6887 | 0.6127 | 0.4576 | 0.3466 | 0.5990 | 0.5038 | 0.8912 | 0.8446 | 0.8912 | 0.9055 | 0.9044 | 0.0708 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.28.0
78
+ - Pytorch 2.0.0
79
+ - Datasets 2.1.0
80
+ - Tokenizers 0.13.3