sofia-todeschini
commited on
Commit
•
bda564d
1
Parent(s):
078b9d1
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: Bioformer-LitCovid-v1.4h
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# Bioformer-LitCovid-v1.4h
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [bioformers/bioformer-litcovid](https://huggingface.co/bioformers/bioformer-litcovid) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5733
|
20 |
+
- Hamming loss: 0.0842
|
21 |
+
- F1 micro: 0.6047
|
22 |
+
- F1 macro: 0.4622
|
23 |
+
- F1 weighted: 0.6887
|
24 |
+
- F1 samples: 0.6127
|
25 |
+
- Precision micro: 0.4576
|
26 |
+
- Precision macro: 0.3466
|
27 |
+
- Precision weighted: 0.5990
|
28 |
+
- Precision samples: 0.5038
|
29 |
+
- Recall micro: 0.8912
|
30 |
+
- Recall macro: 0.8446
|
31 |
+
- Recall weighted: 0.8912
|
32 |
+
- Recall samples: 0.9055
|
33 |
+
- Roc Auc: 0.9044
|
34 |
+
- Accuracy: 0.0708
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 5.451682398151845e-05
|
54 |
+
- train_batch_size: 32
|
55 |
+
- eval_batch_size: 32
|
56 |
+
- seed: 42
|
57 |
+
- gradient_accumulation_steps: 2
|
58 |
+
- total_train_batch_size: 64
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_ratio: 0.08129918921555689
|
62 |
+
- num_epochs: 5
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
|
68 |
+
| 0.9164 | 1.0 | 576 | 0.6810 | 0.1510 | 0.4505 | 0.3468 | 0.6199 | 0.4653 | 0.3057 | 0.2568 | 0.5483 | 0.3450 | 0.8564 | 0.8656 | 0.8564 | 0.8750 | 0.8524 | 0.0078 |
|
69 |
+
| 0.6032 | 2.0 | 1152 | 0.5983 | 0.1154 | 0.5273 | 0.4002 | 0.6493 | 0.5373 | 0.3746 | 0.2939 | 0.5587 | 0.4139 | 0.8902 | 0.8651 | 0.8902 | 0.9050 | 0.8872 | 0.0263 |
|
70 |
+
| 0.4965 | 3.0 | 1728 | 0.5752 | 0.0975 | 0.5704 | 0.4372 | 0.6709 | 0.5795 | 0.4185 | 0.3237 | 0.5797 | 0.4617 | 0.8952 | 0.8536 | 0.8952 | 0.9089 | 0.8991 | 0.0479 |
|
71 |
+
| 0.4354 | 4.0 | 2304 | 0.5655 | 0.0863 | 0.5978 | 0.4554 | 0.6872 | 0.6050 | 0.4508 | 0.3406 | 0.6021 | 0.4948 | 0.8870 | 0.8503 | 0.8870 | 0.9024 | 0.9014 | 0.0636 |
|
72 |
+
| 0.3874 | 5.0 | 2880 | 0.5733 | 0.0842 | 0.6047 | 0.4622 | 0.6887 | 0.6127 | 0.4576 | 0.3466 | 0.5990 | 0.5038 | 0.8912 | 0.8446 | 0.8912 | 0.9055 | 0.9044 | 0.0708 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.28.0
|
78 |
+
- Pytorch 2.0.0
|
79 |
+
- Datasets 2.1.0
|
80 |
+
- Tokenizers 0.13.3
|