sofia-todeschini commited on
Commit
68a5ef6
1 Parent(s): 0520fdd

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: PubMedBERT-Large-LitCovid-1.4
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # PubMedBERT-Large-LitCovid-1.4
16
+
17
+ This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6105
20
+ - Hamming loss: 0.0623
21
+ - F1 micro: 0.6724
22
+ - F1 macro: 0.5303
23
+ - F1 weighted: 0.7292
24
+ - F1 samples: 0.6741
25
+ - Precision micro: 0.5423
26
+ - Precision macro: 0.4146
27
+ - Precision weighted: 0.6499
28
+ - Precision samples: 0.5845
29
+ - Recall micro: 0.8849
30
+ - Recall macro: 0.8178
31
+ - Recall weighted: 0.8849
32
+ - Recall samples: 0.9022
33
+ - Roc Auc: 0.9133
34
+ - Accuracy: 0.1313
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 2e-05
54
+ - train_batch_size: 8
55
+ - eval_batch_size: 8
56
+ - seed: 42
57
+ - gradient_accumulation_steps: 4
58
+ - total_train_batch_size: 32
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 5
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
68
+ | 0.589 | 1.0 | 1151 | 0.5719 | 0.1031 | 0.5554 | 0.4307 | 0.6704 | 0.5629 | 0.4034 | 0.3213 | 0.5843 | 0.4435 | 0.8909 | 0.8673 | 0.8909 | 0.9062 | 0.8941 | 0.0363 |
69
+ | 0.4668 | 2.0 | 2302 | 0.5438 | 0.0836 | 0.6082 | 0.4623 | 0.6974 | 0.6147 | 0.4599 | 0.3478 | 0.6098 | 0.5052 | 0.8976 | 0.8556 | 0.8976 | 0.9123 | 0.9077 | 0.0774 |
70
+ | 0.3791 | 3.0 | 3453 | 0.5510 | 0.0790 | 0.6225 | 0.4829 | 0.7070 | 0.6247 | 0.4754 | 0.3661 | 0.6205 | 0.5140 | 0.9012 | 0.8541 | 0.9012 | 0.9165 | 0.9119 | 0.0759 |
71
+ | 0.307 | 4.0 | 4605 | 0.5954 | 0.0635 | 0.6688 | 0.5235 | 0.7280 | 0.6689 | 0.5371 | 0.4078 | 0.6477 | 0.5767 | 0.8863 | 0.8212 | 0.8863 | 0.9036 | 0.9134 | 0.1229 |
72
+ | 0.2687 | 5.0 | 5755 | 0.6105 | 0.0623 | 0.6724 | 0.5303 | 0.7292 | 0.6741 | 0.5423 | 0.4146 | 0.6499 | 0.5845 | 0.8849 | 0.8178 | 0.8849 | 0.9022 | 0.9133 | 0.1313 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.28.0
78
+ - Pytorch 2.3.0+cu121
79
+ - Datasets 2.20.0
80
+ - Tokenizers 0.13.3