sofia-todeschini commited on
Commit
bb2e55a
1 Parent(s): a8e22e6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: PubMedBERT-LitCovid-1.4
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # PubMedBERT-LitCovid-1.4
16
+
17
+ This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5628
20
+ - Hamming loss: 0.0745
21
+ - F1 micro: 0.6343
22
+ - F1 macro: 0.4913
23
+ - F1 weighted: 0.7105
24
+ - F1 samples: 0.6391
25
+ - Precision micro: 0.4918
26
+ - Precision macro: 0.3747
27
+ - Precision weighted: 0.6260
28
+ - Precision samples: 0.5363
29
+ - Recall micro: 0.8930
30
+ - Recall macro: 0.8406
31
+ - Recall weighted: 0.8930
32
+ - Recall samples: 0.9098
33
+ - Roc Auc: 0.9106
34
+ - Accuracy: 0.0952
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 2e-05
54
+ - train_batch_size: 16
55
+ - eval_batch_size: 16
56
+ - seed: 42
57
+ - gradient_accumulation_steps: 2
58
+ - total_train_batch_size: 32
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 5
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
68
+ | 0.6486 | 1.0 | 1151 | 0.6207 | 0.1099 | 0.5362 | 0.4107 | 0.6522 | 0.5433 | 0.3858 | 0.3021 | 0.5651 | 0.4237 | 0.8791 | 0.8500 | 0.8791 | 0.8964 | 0.8850 | 0.0234 |
69
+ | 0.5189 | 2.0 | 2303 | 0.5572 | 0.0981 | 0.5696 | 0.4299 | 0.6739 | 0.5815 | 0.4170 | 0.3178 | 0.5825 | 0.4655 | 0.8984 | 0.8672 | 0.8984 | 0.9143 | 0.9002 | 0.0501 |
70
+ | 0.4426 | 3.0 | 3454 | 0.5516 | 0.0853 | 0.6029 | 0.4632 | 0.6947 | 0.6086 | 0.4545 | 0.3493 | 0.6085 | 0.4966 | 0.8951 | 0.8538 | 0.8951 | 0.9116 | 0.9057 | 0.0650 |
71
+ | 0.3771 | 4.0 | 4606 | 0.5647 | 0.0735 | 0.6371 | 0.4944 | 0.7110 | 0.6402 | 0.4955 | 0.3779 | 0.6258 | 0.5377 | 0.8920 | 0.8363 | 0.8920 | 0.9087 | 0.9106 | 0.0924 |
72
+ | 0.3467 | 5.0 | 5755 | 0.5628 | 0.0745 | 0.6343 | 0.4913 | 0.7105 | 0.6391 | 0.4918 | 0.3747 | 0.6260 | 0.5363 | 0.8930 | 0.8406 | 0.8930 | 0.9098 | 0.9106 | 0.0952 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.28.0
78
+ - Pytorch 2.0.0
79
+ - Datasets 2.1.0
80
+ - Tokenizers 0.13.3