sofia-todeschini commited on
Commit
2c683ff
1 Parent(s): 6ad46d6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: PubMedELECTRA-LitCovid-1.4
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # PubMedELECTRA-LitCovid-1.4
16
+
17
+ This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedELECTRA-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedELECTRA-base-uncased-abstract) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5898
20
+ - Hamming loss: 0.0967
21
+ - F1 micro: 0.5691
22
+ - F1 macro: 0.4329
23
+ - F1 weighted: 0.6693
24
+ - F1 samples: 0.5791
25
+ - Precision micro: 0.4198
26
+ - Precision macro: 0.3211
27
+ - Precision weighted: 0.5820
28
+ - Precision samples: 0.4666
29
+ - Recall micro: 0.8834
30
+ - Recall macro: 0.8456
31
+ - Recall weighted: 0.8834
32
+ - Recall samples: 0.8983
33
+ - Roc Auc: 0.8941
34
+ - Accuracy: 0.0504
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 2e-05
54
+ - train_batch_size: 16
55
+ - eval_batch_size: 16
56
+ - seed: 42
57
+ - gradient_accumulation_steps: 2
58
+ - total_train_batch_size: 32
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 5
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
68
+ | 0.7482 | 1.0 | 1151 | 0.7061 | 0.1518 | 0.4528 | 0.3484 | 0.6073 | 0.4584 | 0.3063 | 0.2528 | 0.5187 | 0.3313 | 0.8684 | 0.8422 | 0.8684 | 0.8869 | 0.8575 | 0.0023 |
69
+ | 0.5987 | 2.0 | 2303 | 0.6241 | 0.1287 | 0.4983 | 0.3783 | 0.6327 | 0.5120 | 0.3469 | 0.2766 | 0.5412 | 0.3888 | 0.8840 | 0.8571 | 0.8840 | 0.8996 | 0.8771 | 0.0193 |
70
+ | 0.5194 | 3.0 | 3454 | 0.5960 | 0.1079 | 0.5399 | 0.4108 | 0.6584 | 0.5500 | 0.3903 | 0.3056 | 0.5764 | 0.4339 | 0.8752 | 0.8513 | 0.8752 | 0.8921 | 0.8843 | 0.0351 |
71
+ | 0.4471 | 4.0 | 4606 | 0.5900 | 0.0982 | 0.5653 | 0.4286 | 0.6681 | 0.5747 | 0.4157 | 0.3179 | 0.5810 | 0.4609 | 0.8830 | 0.8468 | 0.8830 | 0.8983 | 0.8931 | 0.0460 |
72
+ | 0.422 | 5.0 | 5755 | 0.5898 | 0.0967 | 0.5691 | 0.4329 | 0.6693 | 0.5791 | 0.4198 | 0.3211 | 0.5820 | 0.4666 | 0.8834 | 0.8456 | 0.8834 | 0.8983 | 0.8941 | 0.0504 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.28.0
78
+ - Pytorch 2.3.0+cu121
79
+ - Datasets 2.20.0
80
+ - Tokenizers 0.13.3