sofia-todeschini
commited on
Commit
•
2c683ff
1
Parent(s):
6ad46d6
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: PubMedELECTRA-LitCovid-1.4
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# PubMedELECTRA-LitCovid-1.4
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedELECTRA-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedELECTRA-base-uncased-abstract) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5898
|
20 |
+
- Hamming loss: 0.0967
|
21 |
+
- F1 micro: 0.5691
|
22 |
+
- F1 macro: 0.4329
|
23 |
+
- F1 weighted: 0.6693
|
24 |
+
- F1 samples: 0.5791
|
25 |
+
- Precision micro: 0.4198
|
26 |
+
- Precision macro: 0.3211
|
27 |
+
- Precision weighted: 0.5820
|
28 |
+
- Precision samples: 0.4666
|
29 |
+
- Recall micro: 0.8834
|
30 |
+
- Recall macro: 0.8456
|
31 |
+
- Recall weighted: 0.8834
|
32 |
+
- Recall samples: 0.8983
|
33 |
+
- Roc Auc: 0.8941
|
34 |
+
- Accuracy: 0.0504
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 2e-05
|
54 |
+
- train_batch_size: 16
|
55 |
+
- eval_batch_size: 16
|
56 |
+
- seed: 42
|
57 |
+
- gradient_accumulation_steps: 2
|
58 |
+
- total_train_batch_size: 32
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 5
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:-----------:|:----------:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:------------:|:---------------:|:--------------:|:-------:|:--------:|
|
68 |
+
| 0.7482 | 1.0 | 1151 | 0.7061 | 0.1518 | 0.4528 | 0.3484 | 0.6073 | 0.4584 | 0.3063 | 0.2528 | 0.5187 | 0.3313 | 0.8684 | 0.8422 | 0.8684 | 0.8869 | 0.8575 | 0.0023 |
|
69 |
+
| 0.5987 | 2.0 | 2303 | 0.6241 | 0.1287 | 0.4983 | 0.3783 | 0.6327 | 0.5120 | 0.3469 | 0.2766 | 0.5412 | 0.3888 | 0.8840 | 0.8571 | 0.8840 | 0.8996 | 0.8771 | 0.0193 |
|
70 |
+
| 0.5194 | 3.0 | 3454 | 0.5960 | 0.1079 | 0.5399 | 0.4108 | 0.6584 | 0.5500 | 0.3903 | 0.3056 | 0.5764 | 0.4339 | 0.8752 | 0.8513 | 0.8752 | 0.8921 | 0.8843 | 0.0351 |
|
71 |
+
| 0.4471 | 4.0 | 4606 | 0.5900 | 0.0982 | 0.5653 | 0.4286 | 0.6681 | 0.5747 | 0.4157 | 0.3179 | 0.5810 | 0.4609 | 0.8830 | 0.8468 | 0.8830 | 0.8983 | 0.8931 | 0.0460 |
|
72 |
+
| 0.422 | 5.0 | 5755 | 0.5898 | 0.0967 | 0.5691 | 0.4329 | 0.6693 | 0.5791 | 0.4198 | 0.3211 | 0.5820 | 0.4666 | 0.8834 | 0.8456 | 0.8834 | 0.8983 | 0.8941 | 0.0504 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.28.0
|
78 |
+
- Pytorch 2.3.0+cu121
|
79 |
+
- Datasets 2.20.0
|
80 |
+
- Tokenizers 0.13.3
|