--- language: - ca license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Catalan results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 ca type: mozilla-foundation/common_voice_11_0 args: 'config: ml, split: test' metrics: - name: Wer type: wer value: 8.569471791798646 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs ca type: google/fleurs args: 'config: ml, split: test' metrics: - name: Wer type: wer value: 10.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: projecte-aina/parlament_parla clean type: projecte-aina/parlament_parla args: 'config: ml, split: test' metrics: - name: Wer type: wer value: 19.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Catalan This is an automatic speech recognition model that also does punctuation and casing. This model is for research only, **we do not recommend using this model on production environments**. See our [learnings](https://huggingface.co/softcatala/whisper-small-ca/blob/main/TRAINING.md) when training these models. This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 ca dataset. It achieves the following results on the evaluation set: - Loss: 0.1980 - Wer: 8.5695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2128 | 0.1 | 2000 | 0.2644 | 13.0303 | | 0.1361 | 1.1 | 4000 | 0.2300 | 10.9568 | | 0.0658 | 2.1 | 6000 | 0.2376 | 11.2810 | | 0.102 | 3.09 | 8000 | 0.2156 | 9.8730 | | 0.0706 | 4.09 | 10000 | 0.2126 | 9.6179 | | 0.0428 | 5.09 | 12000 | 0.2178 | 9.3405 | | 0.0503 | 6.09 | 14000 | 0.2109 | 9.1356 | | 0.0778 | 7.08 | 16000 | 0.2058 | 9.2001 | | 0.0082 | 8.08 | 18000 | 0.2173 | 8.9941 | | 0.0994 | 9.08 | 20000 | 0.1980 | 8.5695 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 2.7.1 - Tokenizers 0.13.2