File size: 3,770 Bytes
b7808fd b4076b9 b7808fd b4076b9 b7808fd b4076b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- sft
- quantized
- 4-bit
- AWQ
- text-generation
- autotrain_compatible
- endpoints_compatible
- chatml
base_model: mlabonne/AlphaMonarch-7B
library_name: transformers
model_creator: mlabonne
model_name: AlphaMonarch-7B
model_type: mistral
pipeline_tag: text-generation
inference: false
prompt_template: '<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'
quantized_by: Suparious
---
# mlabonne/Darewin-7B AWQ
- Model creator: [mlabonne](https://huggingface.co/mlabonne)
- Original model: [AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/bMRgkD7-UJ4b82hB_YUN6.png)
## Model Summary
Thanks to [migtessera](https://huggingface.co/migtissera) for his dataset [Hitchhikers](https://huggingface.co/datasets/migtissera/Hitchhiker)
- **Developed by:** macadeliccc
- **License:** apache-2.0
- **Finetuned from model :** mlabonne/AlphaMonarch-7B
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
## How to use
### Install the necessary packages
```bash
pip install --upgrade autoawq autoawq-kernels
```
### Example Python code
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/AlphaHitchhiker-7B-AWQ"
system_message = "You are Alpha, incarnated as a powerful AI."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
```
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
## Prompt template: ChatML
```plaintext
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
``` |