--- base_model: - arcee-ai/Virtuoso-Small - rombodawg/Rombos-LLM-V2.6-Qwen-14b - sometimesanotion/Qwentinuum-14B-v013 - sometimesanotion/Lamarck-14B-v0.3 - EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2 - allura-org/TQ2.5-14B-Sugarquill-v1 - oxyapi/oxy-1-small - v000000/Qwen2.5-Lumen-14B - sthenno-com/miscii-14b-1225 - underwoods/medius-erebus-magnum-14b - huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 library_name: transformers tags: - mergekit - merge license: apache-2.0 language: - en metrics: - accuracy - code_eval pipeline_tag: text-generation --- Vimarckoso is a reasoning-focused part of the [Lamarck](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.4-Qwenvergence) project. It began with a recipe based on [Wernicke](https://huggingface.co/CultriX/Qwen2.5-14B-Wernicke), and then I set out to boost instruction following without any great loss to reasoning. The results surpassed my expectations. As of this writing, with [open-llm-leaderboard](https://huggingface.co/open-llm-leaderboard) catching up on rankings, Vimarckoso v3 should join Arcee AI's [Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small), Sthenno's [miscii-14b-1225](https://huggingface.co/sthenno-com/miscii-14b-1225) and Cultrix's [Qwen2.5-14B-Brocav3](https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3) at the top of the 14B parameter text generation LLM category on this site. As the recipe below will show, their models are strong contributors to Vimarckoso. Congratulations to everyone whose work went into this! ![Vimarckoso-v3.png](https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso-v3/resolve/main/Vimarckoso-v3.png) Wernicke and Vimarckoso both inherit very strong reasoning, and hence high GPQA and MUSR scores, from [EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2). Prose quality gets a boost from models blended in [Qwenvergence-14B-v6-Prose](https://huggingface.co/Qwenvergence-14B-v6-Prose), and instruction following gets healed after the merges thanks to LoRAs based on [huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2). --- ### Configuration The following YAML configuration was used to produce this model: ```yaml name: Qwenvergence-14B-v6-Prose-model_stock merge_method: model_stock base_model: Qwen/Qwen2.5-14B tokenizer_source: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 parameters: int8_mask: true normalize: true rescale: false models: - model: arcee-ai/Virtuoso-Small - model: sometimesanotion/Lamarck-14B-v0.3 - model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2 - model: allura-org/TQ2.5-14B-Sugarquill-v1 - model: oxyapi/oxy-1-small - model: v000000/Qwen2.5-Lumen-14B - model: sthenno-com/miscii-14b-1225 - model: sthenno-com/miscii-14b-1225 - model: underwoods/medius-erebus-magnum-14b - model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 dtype: float32 out_dtype: bfloat16 --- # Nifty TIES to allow a series of LoRA exchange among the above models --- name: Qwenvergence-14B-v6-Prose merge_method: ties base_model: Qwen/Qwen2.5-14B tokenizer_source: base parameters: density: 1.00 weight: 1.00 int8_mask: true normalize: true rescale: false dtype: float32 out_dtype: bfloat16 models: - model: sometimesanotion/Qwenvergence-14B-v6-Prose-slerp parameters: density: 1.00 weight: 1.00 --- # The last stable version of the Qwentinuum project which used successive breadcrumbs and SLERP merges to boost IFEval, merged back into Qwenvergence name: Qwentinuum-14B-v6-Prose-slerp merge_method: slerp base_model: sometimesanotion/Qwenvergence-14B-v6-Prose tokenizer_source: sometimesanotion/Qwenvergence-14B-v6-Prose dtype: bfloat16 out_dtype: bfloat16 parameters: int8_mask: true normalize: true rescale: false parameters: t: - value: 0.40 slices: - sources: - model: sometimesanotion/Qwenvergence-14B-v6-Prose layer_range: [ 0, 8 ] - model: sometimesanotion/Qwentinuum-14B-v6 layer_range: [ 0, 8 ] - sources: - model: sometimesanotion/Qwenvergence-14B-v6-Prose layer_range: [ 8, 16 ] - model: sometimesanotion/Qwentinuum-14B-v6 layer_range: [ 8, 16 ] - sources: - model: sometimesanotion/Qwenvergence-14B-v6-Prose layer_range: [ 16, 24 ] - model: sometimesanotion/Qwentinuum-14B-v6 layer_range: [ 16, 24 ] - sources: - model: sometimesanotion/Qwenvergence-14B-v6-Prose layer_range: [ 24, 32 ] - model: sometimesanotion/Qwentinuum-14B-v6 layer_range: [ 24, 32 ] - sources: - model: sometimesanotion/Qwenvergence-14B-v6-Prose layer_range: [ 32, 40 ] - model: sometimesanotion/Qwentinuum-14B-v6 layer_range: [ 32, 40 ] - sources: - model: sometimesanotion/Qwenvergence-14B-v6-Prose layer_range: [ 40, 48 ] - model: sometimesanotion/Qwentinuum-14B-v6 layer_range: [ 40, 48 ] --- name: Qwen2.5-14B-Vimarckoso-v3-model_stock merge_method: model_stock base_model: sometimesanotion/Base-Qwenvergence tokenizer_source: sometimesanotion/Abliterate-Qwenvergence dtype: bfloat16 out_dtype: bfloat16 parameters: int8_mask: true normalize: true rescale: false models: - model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2-qv512 - model: arcee-ai/Virtuoso-Small-qv128 - model: v000000/Qwen2.5-Lumen-14B-qv256 - model: VAGOsolutions/SauerkrautLM-v2-14b-DPO-qv256 - model: rombodawg/Rombos-LLM-V2.6-Qwen-14b - model: sometimesanotion/Qwentinuum-14B-v013 - model: sometimesanotion/Abliterate-Qwenvergence --- name: Qwen2.5-14B-Vimarckoso-v3-slerp merge_method: slerp base_model: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock tokenizer_source: base dtype: float32 out_dtype: bfloat16 parameters: t: - value: 0.20 slices: - sources: - model: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock layer_range: [ 0, 48 ] - model: sometimesanotion/Qwentinuum-14B-v6-Prose+sometimesanotion/Qwenvergence-Abliterate-256 layer_range: [ 0, 48 ] ```