--- base_model: - arcee-ai/Virtuoso-Small - rombodawg/Rombos-LLM-V2.6-Qwen-14b - sometimesanotion/Qwentinuum-14B-v013 - sometimesanotion/Lamarck-14B-v0.3 - EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2 - allura-org/TQ2.5-14B-Sugarquill-v1 - oxyapi/oxy-1-small - v000000/Qwen2.5-Lumen-14B - sthenno-com/miscii-14b-1225 - underwoods/medius-erebus-magnum-14b - huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 library_name: transformers tags: - mergekit - merge license: apache-2.0 language: - en metrics: - accuracy - code_eval pipeline_tag: text-generation --- Vimarckoso is a reasoning-focused part of the [Lamarck](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.4-Qwenvergence) project. It began with a recipe based on [Wernicke](https://huggingface.co/CultriX/Qwen2.5-14B-Wernicke), and then I set out to boost instruction following without any great loss to reasoning. The results surpassed my expectations. As of this writing, with [open-llm-leaderboard](https://huggingface.co/open-llm-leaderboard) catching up on rankings, Vimarckoso v3 should join Arcee AI's [Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small), Sthenno's [miscii-14b-1225](https://huggingface.co/sthenno-com/miscii-14b-1225) and Cultrix's [Qwen2.5-14B-Brocav3](https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3) at the top of the 14B parameter text generation LLM category on this site. As the recipe below will show, their models are strong contributors to Virmarckoso - CultriX's through a strong influence on Lamarck v0.3. Congratulations to everyone whose work went into this! ![Vimarckoso-v3.png](https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso-v3/resolve/main/Vimarckoso-v3.png) Wernicke and Vimarckoso both inherit very strong reasoning, and hence high GPQA and MUSR scores, from [EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2). Prose quality gets a boost from models blended in [Qwenvergence-14B-v6-Prose](https://huggingface.co/Qwenvergence-14B-v6-Prose), and instruction following gets healed after the merges thanks to LoRAs based on [huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2). --- ### Configuration The following YAML configuration was used to produce this model: ```yaml name: Qwenvergence-14B-v6-Prose-model_stock merge_method: model_stock base_model: Qwen/Qwen2.5-14B tokenizer_source: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 parameters: int8_mask: true normalize: true rescale: false models: - model: arcee-ai/Virtuoso-Small - model: sometimesanotion/Lamarck-14B-v0.3 - model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2 - model: allura-org/TQ2.5-14B-Sugarquill-v1 - model: oxyapi/oxy-1-small - model: v000000/Qwen2.5-Lumen-14B - model: sthenno-com/miscii-14b-1225 - model: sthenno-com/miscii-14b-1225 - model: underwoods/medius-erebus-magnum-14b - model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 dtype: float32 out_dtype: bfloat16 --- # Nifty TIES to allow a series of LoRA exchange among the above models --- name: Qwenvergence-14B-v6-Prose merge_method: ties base_model: Qwen/Qwen2.5-14B tokenizer_source: base parameters: density: 1.00 weight: 1.00 int8_mask: true normalize: true rescale: false dtype: float32 out_dtype: bfloat16 models: - model: sometimesanotion/Qwenvergence-14B-v6-Prose-slerp parameters: density: 1.00 weight: 1.00 --- # The last stable version of the Qwentinuum project which used successive breadcrumbs and SLERP merges to boost IFEval, merged back into Qwenvergence name: Qwentinuum-14B-v6-Prose-slerp merge_method: slerp base_model: sometimesanotion/Qwenvergence-14B-v6-Prose tokenizer_source: sometimesanotion/Qwenvergence-14B-v6-Prose dtype: bfloat16 out_dtype: bfloat16 parameters: int8_mask: true normalize: true rescale: false parameters: t: - value: 0.40 slices: - sources: - model: sometimesanotion/Qwenvergence-14B-v6-Prose layer_range: [ 0, 8 ] - model: sometimesanotion/Qwentinuum-14B-v6 layer_range: [ 0, 8 ] - sources: - model: sometimesanotion/Qwenvergence-14B-v6-Prose layer_range: [ 8, 16 ] - model: sometimesanotion/Qwentinuum-14B-v6 layer_range: [ 8, 16 ] - sources: - model: sometimesanotion/Qwenvergence-14B-v6-Prose layer_range: [ 16, 24 ] - model: sometimesanotion/Qwentinuum-14B-v6 layer_range: [ 16, 24 ] - sources: - model: sometimesanotion/Qwenvergence-14B-v6-Prose layer_range: [ 24, 32 ] - model: sometimesanotion/Qwentinuum-14B-v6 layer_range: [ 24, 32 ] - sources: - model: sometimesanotion/Qwenvergence-14B-v6-Prose layer_range: [ 32, 40 ] - model: sometimesanotion/Qwentinuum-14B-v6 layer_range: [ 32, 40 ] - sources: - model: sometimesanotion/Qwenvergence-14B-v6-Prose layer_range: [ 40, 48 ] - model: sometimesanotion/Qwentinuum-14B-v6 layer_range: [ 40, 48 ] --- name: Qwen2.5-14B-Vimarckoso-v3-model_stock merge_method: model_stock base_model: sometimesanotion/Base-Qwenvergence tokenizer_source: sometimesanotion/Abliterate-Qwenvergence dtype: bfloat16 out_dtype: bfloat16 parameters: int8_mask: true normalize: true rescale: false models: - model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2-qv512 - model: arcee-ai/Virtuoso-Small-qv128 - model: v000000/Qwen2.5-Lumen-14B-qv256 - model: VAGOsolutions/SauerkrautLM-v2-14b-DPO-qv256 - model: rombodawg/Rombos-LLM-V2.6-Qwen-14b - model: sometimesanotion/Qwentinuum-14B-v013 - model: sometimesanotion/Abliterate-Qwenvergence --- name: Qwen2.5-14B-Vimarckoso-v3-slerp merge_method: slerp base_model: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock tokenizer_source: base dtype: float32 out_dtype: bfloat16 parameters: t: - value: 0.20 slices: - sources: - model: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock layer_range: [ 0, 48 ] - model: sometimesanotion/Qwentinuum-14B-v6-Prose+sometimesanotion/Qwenvergence-Abliterate-256 layer_range: [ 0, 48 ] ```