Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 850.10 +/- 148.40
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c83f80c793293e06aed76bf5a8fb476d46e3b2ec702ae04a023e6c63f779ffa
|
3 |
+
size 129231
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f122e2cc430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f122e2cc4c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f122e2cc550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f122e2cc5e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f122e2cc670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f122e2cc700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f122e2cc790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f122e2cc820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f122e2cc8b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f122e2cc940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f122e2cc9d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f122e2cca60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f122e2cd500>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1681546149096800120,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFrmpb+FnjnAcWtxvznJoz/UnZa/Qg+BvsS96r59Y+k5bv2SPyPErL0uS2G/uZrNvya8ir/etIg+KRd7P40o/j6AOGk/AJ5Cv1lI9j52QH2/8ymWvzVt9L3jFCO/5VelP2X0hb8BzBo/2TOiPiLt4L8sqam/f7m3v+w7JT8nzBM/irEGwHsGDsA58eu+oOutP7J5jj/ibTG+ApN8v3frf75AnaO/kbPDv9sxiD+DL3k/JK1dPu6G179/SAm/qvawvmh+ab8XA5A+12iCvxjwDDxl9IW/EK/Tv9kzoj4i7eC/pNQ/QDtlhb/6gDs/DINHv82jib/QbrW+aSnwvi41Fj+Byy2/4fyov+SPB8BBsqY/0x+VvcBd/L8LQCVAaZ5IwGUDw77jlnjA60MEQNWZ4r86Yxi9h1gSwGXrBsAf8bK8ZfSFvxCv07/fBErAIu3gv7Qgsj9He3u9LtQWP167ND+l0py/EWD3PtCn7z9lPFK/SPTMv1e6Hj/Wo4k/MXv5v6eHDkDYF/2+TM+Nv/pcBz/I3pG/f9Vjv8/tFD/GMLA+uZjBPrpaO78FIfo+BDgLP2X0hb8BzBo/2TOiPuuuET+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADGNc82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlXUEvgAAAAASA+u/AAAAAKaBlD0AAAAAWYz5PwAAAAAdX4Q9AAAAADi3+z8AAAAAekDWOwAAAAC3J+a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4AMONQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG1K/70AAAAAmEXrvwAAAAAQgp69AAAAAMjh5z8AAAAAo9+3vQAAAAA8B/Q/AAAAAPtcgr0AAAAAVnvbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmNoDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICXOP29AAAAAHET478AAAAAbjJwPAAAAAC0A+I/AAAAAERXvTgAAAAAoMj2PwAAAAAyHrc9AAAAAIB/+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwDTO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACQuFvQAAAABp1d2/AAAAAKr4sL0AAAAAQAP1PwAAAAAK9uQ8AAAAADrE+T8AAAAAz8v2PQAAAAB2YvW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJCL+MUAT7GMAWyUTegDjAF0lEdAqeXp8YyftnV9lChoBkdAc3lgDzRQamgHTegDaAhHQKnrBabF0gd1fZQoaAZHQJFs1GWldkdoB03oA2gIR0Cp7WizkZJkdX2UKGgGR0B1025Gz8gqaAdN6ANoCEdAqe39awD/2nV9lChoBkdAe1Nxzq8lHGgHTegDaAhHQKnzDQWN3np1fZQoaAZHQJEXlxffGdZoB03oA2gIR0Cp+hyThYNidX2UKGgGR0CKbgouPFNtaAdN6ANoCEdAqfyEdgfEGnV9lChoBkdAh/J/LDAJs2gHTegDaAhHQKn9GweNkvt1fZQoaAZHQIL9OXw9aEBoB03oA2gIR0CqAPJSaVlgdX2UKGgGR0BzruBg/keZaAdN6ANoCEdAqgYFAPd2xXV9lChoBkdAkiHp80DU3GgHTegDaAhHQKoIgqQRwqB1fZQoaAZHQIYZa8L8aXNoB03oA2gIR0CqCRsp5NXYdX2UKGgGR0CSpyiuuA7QaAdN6ANoCEdAqgztg4Otn3V9lChoBkdAjusBtk4FR2gHTegDaAhHQKoUVBNVR1p1fZQoaAZHQJHlwz1schloB03oA2gIR0CqF6jK5kLAdX2UKGgGR0CSWvM/QjUvaAdN6ANoCEdAqhg7tb9qDnV9lChoBkdAkVnBuKoAGWgHTegDaAhHQKocEyuZCv51fZQoaAZHQJAWpITXarZoB03oA2gIR0CqIPpnHvMKdX2UKGgGR0CQB8EbYK6XaAdN6ANoCEdAqiNso+fRNXV9lChoBkdAkRKMDfWMCWgHTegDaAhHQKokBapPykN1fZQoaAZHQIujj6LwWnFoB03oA2gIR0CqJ+NsWO6vdX2UKGgGR0B9vPvkRzzVaAdN6ANoCEdAqi2uvwEyL3V9lChoBkdAhUnQjt5UtWgHTegDaAhHQKoxQ2itaIN1fZQoaAZHQIyu2lsP8Q9oB03oA2gIR0CqMjlzdUKidX2UKGgGR0CO2+Xw9aEBaAdN6ANoCEdAqjcoTGo73nV9lChoBkdAgskdfsu3+mgHTegDaAhHQKo8GIiTt9h1fZQoaAZHQIkZomXw9aFoB03oA2gIR0CqPoBESdvsdX2UKGgGR0CEe3YfW+XaaAdN6ANoCEdAqj8dHDrJKnV9lChoBkdAjZwbdadMCmgHTegDaAhHQKpC6uCf6Gh1fZQoaAZHQIL1ASL61stoB03oA2gIR0CqR+Qwj+rEdX2UKGgGR0CF4KqjrRjSaAdN6ANoCEdAqkq7dxhlUnV9lChoBkdAiOOemvW6LGgHTegDaAhHQKpLmohpxm11fZQoaAZHQInXBML4N7VoB03oA2gIR0CqUWundfsvdX2UKGgGR0CH7NYqXnhbaAdN6ANoCEdAqlb5kK/mDHV9lChoBkdAi+p17hNucmgHTegDaAhHQKpZSkpqh111fZQoaAZHQIz0W2b5M11oB03oA2gIR0CqWeFsHjZMdX2UKGgGR0CJPM6FM7EHaAdN6ANoCEdAql2okVvddnV9lChoBkdAji37TlT3qWgHTegDaAhHQKpi680UGml1fZQoaAZHQIwkcu8K5TZoB03oA2gIR0CqZhW0zCUHdX2UKGgGR0CI7VrD63y7aAdN6ANoCEdAqmbpIczZYnV9lChoBkdAkc7OfAbhnGgHTegDaAhHQKps4/gR9PV1fZQoaAZHQJHAcipvP1NoB03oA2gIR0CqdO0/GEPEdX2UKGgGR0CQIMmHgxagaAdN6ANoCEdAqnfNdeIEbHV9lChoBkdAkJ6WReTmn2gHTegDaAhHQKp4aEJ0GNd1fZQoaAZHQI9N1QMx46hoB03oA2gIR0CqfEgDifg8dX2UKGgGR0CJwa8vEjxDaAdN6ANoCEdAqoEz850bLnV9lChoBkdAj7wx2B8QZmgHTegDaAhHQKqDqCHRCyB1fZQoaAZHQJCbMg0TDfpoB03oA2gIR0CqhD/uTibVdX2UKGgGR0CLJvbPhQ3xaAdN6ANoCEdAqogjaZhKDnV9lChoBkdAhuAD/MnqmmgHTegDaAhHQKqOVD4QBgh1fZQoaAZHQJHKEGnn+yZoB03oA2gIR0CqkfeglF+edX2UKGgGR0CO6b1bqyGBaAdN6ANoCEdAqpLkqJ/G2nV9lChoBkfAFoQxvegte2gHTegDaAhHQKqXIPgeii91fZQoaAZHQIpMd0PpY9xoB03oA2gIR0CqnEbDEWIodX2UKGgGR0CJb+2pAD7qaAdN6ANoCEdAqp7W7g88tHV9lChoBkdAjjG6V+qioWgHTegDaAhHQKqfdDxb0OF1fZQoaAZHQFxdb2USqVBoB03oA2gIR0Cqo2oAXEZSdX2UKGgGR0CKdzypaRp2aAdN6ANoCEdAqqiH9cbBGnV9lChoBkdAhmzl8XvYvmgHTegDaAhHQKqr9je9Ba91fZQoaAZHQIiBXhhpg1FoB03oA2gIR0CqrN1Q66redX2UKGgGR0CRxtv4ubqhaAdN6ANoCEdAqrJ9fiPyTnV9lChoBkdAjKhqQq7ROWgHTegDaAhHQKq3gAS39aV1fZQoaAZHQIf7ucFyJbdoB03oA2gIR0CquepY9xIbdX2UKGgGR0CCRklWwNb1aAdN6ANoCEdAqrqKdnTRY3V9lChoBkdAiCYBJqZc9mgHTegDaAhHQKq+aKGcnVp1fZQoaAZHQImbgWcjJMhoB03oA2gIR0Cqw3OC5EtvdX2UKGgGR0CNuYfV7Qb/aAdN6ANoCEdAqsXSc0+C9XV9lChoBkdAjTeKfnOjZmgHTegDaAhHQKrGrj2i+L51fZQoaAZHQJCOh3EAHVxoB03oA2gIR0CqzIIMKCxvdX2UKGgGR0CF5bDArQPaaAdN6ANoCEdAqtK4ljVhC3V9lChoBkdAijmivgWJrWgHTegDaAhHQKrVK9eyAx11fZQoaAZHQIMOdlEqlP9oB03oA2gIR0Cq1b+9Jz1cdX2UKGgGR0CQAo70nPVvaAdN6ANoCEdAqtnGzQeFL3V9lChoBkdAjUXJWmxdIGgHTegDaAhHQKre+O7QLNR1fZQoaAZHQIwUPw3HaOBoB03oA2gIR0Cq4WjT8YQ8dX2UKGgGR0CRsaxRl6JJaAdN6ANoCEdAquH+1Bt1p3V9lChoBkdAjpYbHIZIhGgHTegDaAhHQKrmv0TURWd1fZQoaAZHQIHJcsnRb8poB03oA2gIR0Cq7jGEwnIAdX2UKGgGR0CUgw531SOzaAdN6ANoCEdAqvCO7+T/yXV9lChoBkdAkHP8kMTewmgHTegDaAhHQKrxI1hLGrF1fZQoaAZHQI41qRGMGX5oB03oA2gIR0Cq9PTyjHn2dX2UKGgGR0CTmrOh0yP/aAdN6ANoCEdAqvnUhX8wYnV9lChoBkdAjGdEGqxTsWgHTegDaAhHQKr8Ro9LYf51fZQoaAZHQJEXyziS7oVoB03oA2gIR0Cq/OKRlpXZdX2UKGgGR0CNkQYQarFPaAdN6ANoCEdAqwJ4gA6uGXV9lChoBkdAkU9x3mmtQ2gHTegDaAhHQKsLcce8wpR1fZQoaAZHQJBnCXpnpStoB03oA2gIR0CrDy6sIVuadX2UKGgGR0CQbfCF9KEnaAdN6ANoCEdAqw/RmEoOQXV9lChoBkdAjPdNoJzDGmgHTegDaAhHQKsTo/KyOaR1fZQoaAZHQImW8nAqNIdoB03oA2gIR0CrGPfWMCLddX2UKGgGR0COESRHww0waAdN6ANoCEdAqxtcfFJg9nV9lChoBkdAjF/jPnjhk2gHTegDaAhHQKsb9IVdonN1fZQoaAZHQI5BPaDf3vhoB03oA2gIR0CrH+D3225QdX2UKGgGR0CMoHCzkZJkaAdN6ANoCEdAqyXKcTakAXV9lChoBkdAi0Ku5avA5GgHTegDaAhHQKspc8WbgCR1fZQoaAZHQI5I112aDwpoB03oA2gIR0CrKmWu5jH5dX2UKGgGR0CI3N93r2QGaAdN6ANoCEdAqy8wUcn3L3V9lChoBkdAiVkt65XlsGgHTegDaAhHQKs0NB0IToN1fZQoaAZHQId+jSuyNXJoB03oA2gIR0CrNpgMMI/rdX2UKGgGR0CKLsM9bHIZaAdN6ANoCEdAqzcxISUTtnVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f66cdf7f4ed012d74116bfdfa8ab4bf00ce9139af6f972b965278bc01390adf
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3233960a793c639ce2420c5d2206c5f1f9f5e4a7eeb169a42d758236877e35f3
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f122e2cc430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f122e2cc4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f122e2cc550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f122e2cc5e0>", "_build": "<function ActorCriticPolicy._build at 0x7f122e2cc670>", "forward": "<function ActorCriticPolicy.forward at 0x7f122e2cc700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f122e2cc790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f122e2cc820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f122e2cc8b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f122e2cc940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f122e2cc9d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f122e2cca60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f122e2cd500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681546149096800120, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFrmpb+FnjnAcWtxvznJoz/UnZa/Qg+BvsS96r59Y+k5bv2SPyPErL0uS2G/uZrNvya8ir/etIg+KRd7P40o/j6AOGk/AJ5Cv1lI9j52QH2/8ymWvzVt9L3jFCO/5VelP2X0hb8BzBo/2TOiPiLt4L8sqam/f7m3v+w7JT8nzBM/irEGwHsGDsA58eu+oOutP7J5jj/ibTG+ApN8v3frf75AnaO/kbPDv9sxiD+DL3k/JK1dPu6G179/SAm/qvawvmh+ab8XA5A+12iCvxjwDDxl9IW/EK/Tv9kzoj4i7eC/pNQ/QDtlhb/6gDs/DINHv82jib/QbrW+aSnwvi41Fj+Byy2/4fyov+SPB8BBsqY/0x+VvcBd/L8LQCVAaZ5IwGUDw77jlnjA60MEQNWZ4r86Yxi9h1gSwGXrBsAf8bK8ZfSFvxCv07/fBErAIu3gv7Qgsj9He3u9LtQWP167ND+l0py/EWD3PtCn7z9lPFK/SPTMv1e6Hj/Wo4k/MXv5v6eHDkDYF/2+TM+Nv/pcBz/I3pG/f9Vjv8/tFD/GMLA+uZjBPrpaO78FIfo+BDgLP2X0hb8BzBo/2TOiPuuuET+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADGNc82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlXUEvgAAAAASA+u/AAAAAKaBlD0AAAAAWYz5PwAAAAAdX4Q9AAAAADi3+z8AAAAAekDWOwAAAAC3J+a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4AMONQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG1K/70AAAAAmEXrvwAAAAAQgp69AAAAAMjh5z8AAAAAo9+3vQAAAAA8B/Q/AAAAAPtcgr0AAAAAVnvbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmNoDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICXOP29AAAAAHET478AAAAAbjJwPAAAAAC0A+I/AAAAAERXvTgAAAAAoMj2PwAAAAAyHrc9AAAAAIB/+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwDTO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACQuFvQAAAABp1d2/AAAAAKr4sL0AAAAAQAP1PwAAAAAK9uQ8AAAAADrE+T8AAAAAz8v2PQAAAAB2YvW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJCL+MUAT7GMAWyUTegDjAF0lEdAqeXp8YyftnV9lChoBkdAc3lgDzRQamgHTegDaAhHQKnrBabF0gd1fZQoaAZHQJFs1GWldkdoB03oA2gIR0Cp7WizkZJkdX2UKGgGR0B1025Gz8gqaAdN6ANoCEdAqe39awD/2nV9lChoBkdAe1Nxzq8lHGgHTegDaAhHQKnzDQWN3np1fZQoaAZHQJEXlxffGdZoB03oA2gIR0Cp+hyThYNidX2UKGgGR0CKbgouPFNtaAdN6ANoCEdAqfyEdgfEGnV9lChoBkdAh/J/LDAJs2gHTegDaAhHQKn9GweNkvt1fZQoaAZHQIL9OXw9aEBoB03oA2gIR0CqAPJSaVlgdX2UKGgGR0BzruBg/keZaAdN6ANoCEdAqgYFAPd2xXV9lChoBkdAkiHp80DU3GgHTegDaAhHQKoIgqQRwqB1fZQoaAZHQIYZa8L8aXNoB03oA2gIR0CqCRsp5NXYdX2UKGgGR0CSpyiuuA7QaAdN6ANoCEdAqgztg4Otn3V9lChoBkdAjusBtk4FR2gHTegDaAhHQKoUVBNVR1p1fZQoaAZHQJHlwz1schloB03oA2gIR0CqF6jK5kLAdX2UKGgGR0CSWvM/QjUvaAdN6ANoCEdAqhg7tb9qDnV9lChoBkdAkVnBuKoAGWgHTegDaAhHQKocEyuZCv51fZQoaAZHQJAWpITXarZoB03oA2gIR0CqIPpnHvMKdX2UKGgGR0CQB8EbYK6XaAdN6ANoCEdAqiNso+fRNXV9lChoBkdAkRKMDfWMCWgHTegDaAhHQKokBapPykN1fZQoaAZHQIujj6LwWnFoB03oA2gIR0CqJ+NsWO6vdX2UKGgGR0B9vPvkRzzVaAdN6ANoCEdAqi2uvwEyL3V9lChoBkdAhUnQjt5UtWgHTegDaAhHQKoxQ2itaIN1fZQoaAZHQIyu2lsP8Q9oB03oA2gIR0CqMjlzdUKidX2UKGgGR0CO2+Xw9aEBaAdN6ANoCEdAqjcoTGo73nV9lChoBkdAgskdfsu3+mgHTegDaAhHQKo8GIiTt9h1fZQoaAZHQIkZomXw9aFoB03oA2gIR0CqPoBESdvsdX2UKGgGR0CEe3YfW+XaaAdN6ANoCEdAqj8dHDrJKnV9lChoBkdAjZwbdadMCmgHTegDaAhHQKpC6uCf6Gh1fZQoaAZHQIL1ASL61stoB03oA2gIR0CqR+Qwj+rEdX2UKGgGR0CF4KqjrRjSaAdN6ANoCEdAqkq7dxhlUnV9lChoBkdAiOOemvW6LGgHTegDaAhHQKpLmohpxm11fZQoaAZHQInXBML4N7VoB03oA2gIR0CqUWundfsvdX2UKGgGR0CH7NYqXnhbaAdN6ANoCEdAqlb5kK/mDHV9lChoBkdAi+p17hNucmgHTegDaAhHQKpZSkpqh111fZQoaAZHQIz0W2b5M11oB03oA2gIR0CqWeFsHjZMdX2UKGgGR0CJPM6FM7EHaAdN6ANoCEdAql2okVvddnV9lChoBkdAji37TlT3qWgHTegDaAhHQKpi680UGml1fZQoaAZHQIwkcu8K5TZoB03oA2gIR0CqZhW0zCUHdX2UKGgGR0CI7VrD63y7aAdN6ANoCEdAqmbpIczZYnV9lChoBkdAkc7OfAbhnGgHTegDaAhHQKps4/gR9PV1fZQoaAZHQJHAcipvP1NoB03oA2gIR0CqdO0/GEPEdX2UKGgGR0CQIMmHgxagaAdN6ANoCEdAqnfNdeIEbHV9lChoBkdAkJ6WReTmn2gHTegDaAhHQKp4aEJ0GNd1fZQoaAZHQI9N1QMx46hoB03oA2gIR0CqfEgDifg8dX2UKGgGR0CJwa8vEjxDaAdN6ANoCEdAqoEz850bLnV9lChoBkdAj7wx2B8QZmgHTegDaAhHQKqDqCHRCyB1fZQoaAZHQJCbMg0TDfpoB03oA2gIR0CqhD/uTibVdX2UKGgGR0CLJvbPhQ3xaAdN6ANoCEdAqogjaZhKDnV9lChoBkdAhuAD/MnqmmgHTegDaAhHQKqOVD4QBgh1fZQoaAZHQJHKEGnn+yZoB03oA2gIR0CqkfeglF+edX2UKGgGR0CO6b1bqyGBaAdN6ANoCEdAqpLkqJ/G2nV9lChoBkfAFoQxvegte2gHTegDaAhHQKqXIPgeii91fZQoaAZHQIpMd0PpY9xoB03oA2gIR0CqnEbDEWIodX2UKGgGR0CJb+2pAD7qaAdN6ANoCEdAqp7W7g88tHV9lChoBkdAjjG6V+qioWgHTegDaAhHQKqfdDxb0OF1fZQoaAZHQFxdb2USqVBoB03oA2gIR0Cqo2oAXEZSdX2UKGgGR0CKdzypaRp2aAdN6ANoCEdAqqiH9cbBGnV9lChoBkdAhmzl8XvYvmgHTegDaAhHQKqr9je9Ba91fZQoaAZHQIiBXhhpg1FoB03oA2gIR0CqrN1Q66redX2UKGgGR0CRxtv4ubqhaAdN6ANoCEdAqrJ9fiPyTnV9lChoBkdAjKhqQq7ROWgHTegDaAhHQKq3gAS39aV1fZQoaAZHQIf7ucFyJbdoB03oA2gIR0CquepY9xIbdX2UKGgGR0CCRklWwNb1aAdN6ANoCEdAqrqKdnTRY3V9lChoBkdAiCYBJqZc9mgHTegDaAhHQKq+aKGcnVp1fZQoaAZHQImbgWcjJMhoB03oA2gIR0Cqw3OC5EtvdX2UKGgGR0CNuYfV7Qb/aAdN6ANoCEdAqsXSc0+C9XV9lChoBkdAjTeKfnOjZmgHTegDaAhHQKrGrj2i+L51fZQoaAZHQJCOh3EAHVxoB03oA2gIR0CqzIIMKCxvdX2UKGgGR0CF5bDArQPaaAdN6ANoCEdAqtK4ljVhC3V9lChoBkdAijmivgWJrWgHTegDaAhHQKrVK9eyAx11fZQoaAZHQIMOdlEqlP9oB03oA2gIR0Cq1b+9Jz1cdX2UKGgGR0CQAo70nPVvaAdN6ANoCEdAqtnGzQeFL3V9lChoBkdAjUXJWmxdIGgHTegDaAhHQKre+O7QLNR1fZQoaAZHQIwUPw3HaOBoB03oA2gIR0Cq4WjT8YQ8dX2UKGgGR0CRsaxRl6JJaAdN6ANoCEdAquH+1Bt1p3V9lChoBkdAjpYbHIZIhGgHTegDaAhHQKrmv0TURWd1fZQoaAZHQIHJcsnRb8poB03oA2gIR0Cq7jGEwnIAdX2UKGgGR0CUgw531SOzaAdN6ANoCEdAqvCO7+T/yXV9lChoBkdAkHP8kMTewmgHTegDaAhHQKrxI1hLGrF1fZQoaAZHQI41qRGMGX5oB03oA2gIR0Cq9PTyjHn2dX2UKGgGR0CTmrOh0yP/aAdN6ANoCEdAqvnUhX8wYnV9lChoBkdAjGdEGqxTsWgHTegDaAhHQKr8Ro9LYf51fZQoaAZHQJEXyziS7oVoB03oA2gIR0Cq/OKRlpXZdX2UKGgGR0CNkQYQarFPaAdN6ANoCEdAqwJ4gA6uGXV9lChoBkdAkU9x3mmtQ2gHTegDaAhHQKsLcce8wpR1fZQoaAZHQJBnCXpnpStoB03oA2gIR0CrDy6sIVuadX2UKGgGR0CQbfCF9KEnaAdN6ANoCEdAqw/RmEoOQXV9lChoBkdAjPdNoJzDGmgHTegDaAhHQKsTo/KyOaR1fZQoaAZHQImW8nAqNIdoB03oA2gIR0CrGPfWMCLddX2UKGgGR0COESRHww0waAdN6ANoCEdAqxtcfFJg9nV9lChoBkdAjF/jPnjhk2gHTegDaAhHQKsb9IVdonN1fZQoaAZHQI5BPaDf3vhoB03oA2gIR0CrH+D3225QdX2UKGgGR0CMoHCzkZJkaAdN6ANoCEdAqyXKcTakAXV9lChoBkdAi0Ku5avA5GgHTegDaAhHQKspc8WbgCR1fZQoaAZHQI5I112aDwpoB03oA2gIR0CrKmWu5jH5dX2UKGgGR0CI3N93r2QGaAdN6ANoCEdAqy8wUcn3L3V9lChoBkdAiVkt65XlsGgHTegDaAhHQKs0NB0IToN1fZQoaAZHQId+jSuyNXJoB03oA2gIR0CrNpgMMI/rdX2UKGgGR0CKLsM9bHIZaAdN6ANoCEdAqzcxISUTtnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (917 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 850.0956595430616, "std_reward": 148.40432360488805, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-15T09:32:56.668323"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c01a418be1ff6bb54a3318ce50fa5e45ec035e1621a3330d8ad4cdad34f71b30
|
3 |
+
size 2170
|