sooh-j commited on
Commit
2ec8a04
·
1 Parent(s): 7f39d14

sooh_ppo-LunarLander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 271.08 +/- 16.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b252a29d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b252a2a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b252a2af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b252a2b80>", "_build": "<function ActorCriticPolicy._build at 0x7f6b252a2c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f6b252a2ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6b252a2d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b252a2dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6b252a2e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b252a2ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b252a2f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b252a4040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6b252a1a40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681285409607770980, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNxOj7XDis/dmoTPVoEwL6YrjQ+rmybvQAAAAAAAAAATaCkvQvomD/YENW+Btgsv+C5qL11cVK+AAAAAAAAAADN/RW9KSByun6PwTYJgSaxF/Q9u9MB37UAAIA/AACAP5rUaT3D6Ri6le1qtS85nbACBW25SEyrNAAAgD8AAIA/TQ19PV8OJT/KLZ49rrQev8IF6Tw7byo9AAAAAAAAAABmpA48bJC4PyiUTT6kAZw+i3fjOlpamT0AAAAAAAAAADOHqDsfteG5rm2MuxkIkjzPyZw7Ylx+vQAAgD8AAIA/mvviPLY4Ez2WpbM8c1JGvpVN17rQPAy8AAAAAAAAAADT002+gU4eP1WW/r3kBfq+WWJbviuNVT0AAAAAAAAAAJr1FDz7Ty4/2mfSPNd9Jr8AuiY8AXqNPQAAAAAAAAAA+nQxvrbUKbzWtJu6Pju6uLGjlT07b5c5AACAPwAAgD9mItq7lPmgPhDwEjtRgta+QrkSO6O7zzsAAAAAAAAAAGNbj75wDmE/zYosvuHUBb+V75W+KhbDOwAAAAAAAAAAmmagvKElwT1Kobw98NQwvs223jz+Dk69AAAAAAAAAABmtDM9FsO/P6Yowz5AvWA+Ib73PC2K6j0AAAAAAAAAAJpBPL2PhwG8Uc+CPOWDmjx7QFW9gU2APQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1esWgfELcUCUhpRSlIwBbJRNNwGMAXSUR0CafSASWZ7YdX2UKGgGaAloD0MIvCTOiuhTc0CUhpRSlGgVTQ8BaBZHQJp9K7kGRmt1fZQoaAZoCWgPQwj35GGhlndxQJSGlFKUaBVL+2gWR0CafUs+3YthdX2UKGgGaAloD0MIl+E/3QCNcECUhpRSlGgVS9xoFkdAmn2WNJe3QXV9lChoBmgJaA9DCA6fdCIBw3FAlIaUUpRoFU0nAWgWR0Caf0MfRu0kdX2UKGgGaAloD0MIur963PfhcUCUhpRSlGgVS9JoFkdAmoAwpSaVlnV9lChoBmgJaA9DCNMyUu/pNHJAlIaUUpRoFUvSaBZHQJqAUaaTfSB1fZQoaAZoCWgPQwhTQNr/APhtQJSGlFKUaBVLxWgWR0CagORkVerudX2UKGgGaAloD0MI/B2KAn0iX0CUhpRSlGgVTegDaBZHQJqBCIyj59F1fZQoaAZoCWgPQwh+5Nak2wJjQJSGlFKUaBVN6ANoFkdAmoJ44p+c6XV9lChoBmgJaA9DCBKkUuyownJAlIaUUpRoFUv4aBZHQJqCr3Fkxyp1fZQoaAZoCWgPQwh9PsqIC6VxQJSGlFKUaBVLrWgWR0CagtOeJ53UdX2UKGgGaAloD0MIiPTb14G6XkCUhpRSlGgVTegDaBZHQJqC6F+NLlF1fZQoaAZoCWgPQwgm5IOejSBwQJSGlFKUaBVLyWgWR0Cagye4TbnHdX2UKGgGaAloD0MII9i4/t0ScUCUhpRSlGgVS8poFkdAmoNQ/LTx5XV9lChoBmgJaA9DCEzfawiODW9AlIaUUpRoFU0BAWgWR0Cag3EwnH/+dX2UKGgGaAloD0MImrM+5RiVcUCUhpRSlGgVS7RoFkdAmoRd07r9l3V9lChoBmgJaA9DCDY8vVJWVnFAlIaUUpRoFU0vAWgWR0CahfonKGL2dX2UKGgGaAloD0MIopbmVgj4ZUCUhpRSlGgVTegDaBZHQJqGDegte2N1fZQoaAZoCWgPQwi4k4jw77hwQJSGlFKUaBVLyWgWR0Cahqe3QUpNdX2UKGgGaAloD0MIONxHbk18c0CUhpRSlGgVS9BoFkdAmoa3k1dgOXV9lChoBmgJaA9DCPet1omLr3JAlIaUUpRoFUvvaBZHQJqHCnzg/C91fZQoaAZoCWgPQwhmL9tOG4RxQJSGlFKUaBVL+GgWR0CahzUmUnogdX2UKGgGaAloD0MIGjIepZKxcUCUhpRSlGgVS7JoFkdAmodgZKnNxHV9lChoBmgJaA9DCEiLM4Y5/W5AlIaUUpRoFUuzaBZHQJqHmHCXQdF1fZQoaAZoCWgPQwgJNUOqKJFuQJSGlFKUaBVLu2gWR0CaiIJYDDCQdX2UKGgGaAloD0MIvAZ96W2wcECUhpRSlGgVS9RoFkdAmoiIuoP07XV9lChoBmgJaA9DCLkXmBUKKnJAlIaUUpRoFUvfaBZHQJqI4XKr7wd1fZQoaAZoCWgPQwj0qPi/Y55yQJSGlFKUaBVL8GgWR0CaiYY/3WWhdX2UKGgGaAloD0MIU+v9RrugcUCUhpRSlGgVS+doFkdAmoqVA7gbZXV9lChoBmgJaA9DCNtrQe9NnXBAlIaUUpRoFU0mAWgWR0Cai0CPZIxydX2UKGgGaAloD0MIYRbaOQ3hckCUhpRSlGgVS+ZoFkdAmowrH6uW8nV9lChoBmgJaA9DCFUWhV2UB3BAlIaUUpRoFUvBaBZHQJqMNcE/0NB1fZQoaAZoCWgPQwjncoOhDlZwQJSGlFKUaBVL1WgWR0CajG45cTrWdX2UKGgGaAloD0MIo7CLosdxcUCUhpRSlGgVS+RoFkdAmozKy8jAz3V9lChoBmgJaA9DCOmedY2W6m9AlIaUUpRoFUvOaBZHQJqM66RQrMF1fZQoaAZoCWgPQwhxOslWVwdwQJSGlFKUaBVL2GgWR0CajV/4qPOqdX2UKGgGaAloD0MIGsOcoM2BbkCUhpRSlGgVS+5oFkdAmo2QOnVG1HV9lChoBmgJaA9DCOfHX1oUk3BAlIaUUpRoFUvcaBZHQJqOg5myxA11fZQoaAZoCWgPQwhORL+2Pk5zQJSGlFKUaBVL3mgWR0CajvpXZGrkdX2UKGgGaAloD0MI5A8GnrtgcUCUhpRSlGgVS+poFkdAmpAZ3os7MnV9lChoBmgJaA9DCHiY9s393nJAlIaUUpRoFU1zAWgWR0CakDDaoMrmdX2UKGgGaAloD0MIpDZxcj9QcECUhpRSlGgVS8poFkdAmpD2W6bvw3V9lChoBmgJaA9DCK8nui68JnFAlIaUUpRoFUv0aBZHQJqRmRT0g8t1fZQoaAZoCWgPQwgTDyib8nVvQJSGlFKUaBVLv2gWR0Cakay2QXANdX2UKGgGaAloD0MIyhmKOx5kckCUhpRSlGgVS8toFkdAmpH7uMMqjXV9lChoBmgJaA9DCP578NolUXBAlIaUUpRoFUvUaBZHQJqSh2fTTfB1fZQoaAZoCWgPQwgeozzzMtNwQJSGlFKUaBVL6mgWR0Cak5GI9C/odX2UKGgGaAloD0MInrXbLjQmcUCUhpRSlGgVS9loFkdAmpO5jMFEA3V9lChoBmgJaA9DCC0ly0noVnFAlIaUUpRoFUvhaBZHQJqUL8uSOip1fZQoaAZoCWgPQwjABkSI6+5xQJSGlFKUaBVL12gWR0CalXXN1QqJdX2UKGgGaAloD0MIebKbGf3WcUCUhpRSlGgVS/VoFkdAmpXkVBUrCnV9lChoBmgJaA9DCA8O9iaG9XBAlIaUUpRoFUvWaBZHQJqXgYNy5qd1fZQoaAZoCWgPQwgHliNkIHRwQJSGlFKUaBVLzmgWR0Cal/FcpsoEdX2UKGgGaAloD0MImIqNeR20b0CUhpRSlGgVS7ZoFkdAmpgnqzJIUnV9lChoBmgJaA9DCPFiYYgcOmBAlIaUUpRoFU3oA2gWR0CamHQqI7/5dX2UKGgGaAloD0MIUDqRYGpLckCUhpRSlGgVS99oFkdAmpiGE4//vXV9lChoBmgJaA9DCFGiJY+nfXFAlIaUUpRoFUvuaBZHQJqZQtwrDqJ1fZQoaAZoCWgPQwiAYmTJnBViQJSGlFKUaBVN6ANoFkdAmpm/tIClrXV9lChoBmgJaA9DCDV6NUBpzHFAlIaUUpRoFUvhaBZHQJqaahAWznl1fZQoaAZoCWgPQwjUu3g/bv1wQJSGlFKUaBVL4mgWR0CampUrTYukdX2UKGgGaAloD0MI6fF7m35OckCUhpRSlGgVS9loFkdAmprBF7Uoa3V9lChoBmgJaA9DCHQkl/+Q0nBAlIaUUpRoFUviaBZHQJqdFKL876p1fZQoaAZoCWgPQwiz7bQ1Iq5wQJSGlFKUaBVL8WgWR0CanSHKwIMSdX2UKGgGaAloD0MIpics8YAocUCUhpRSlGgVS9BoFkdAmp/vKQq7RXV9lChoBmgJaA9DCN8ZbVVSNnFAlIaUUpRoFUvpaBZHQJqgnO4XoDB1fZQoaAZoCWgPQwh5AmGnWLpxQJSGlFKUaBVL8GgWR0CaoKIv8IiUdX2UKGgGaAloD0MI3+ALkykUcUCUhpRSlGgVS6toFkdAmqGS1E3KjnV9lChoBmgJaA9DCK6gaYmVDnFAlIaUUpRoFUvqaBZHQJqi8it7rs11fZQoaAZoCWgPQwjtndFWJadxQJSGlFKUaBVNRwFoFkdAmqPv7rLQonV9lChoBmgJaA9DCDyh159EdHFAlIaUUpRoFU0GAWgWR0CapZqhlDnedX2UKGgGaAloD0MIDFwea0Z0ckCUhpRSlGgVTQUBaBZHQJqmOwcHWz51fZQoaAZoCWgPQwi0VrQ5zhZwQJSGlFKUaBVLx2gWR0Capl6rvLHNdX2UKGgGaAloD0MI3/qw3ugEc0CUhpRSlGgVS+BoFkdAmqecs6JZXHV9lChoBmgJaA9DCHlXPWAen3JAlIaUUpRoFU1gAWgWR0CaqBgy/KyOdX2UKGgGaAloD0MI7YFWYIgwcECUhpRSlGgVS7NoFkdAmqhtH2AXmHV9lChoBmgJaA9DCKLxRBCna3FAlIaUUpRoFUvHaBZHQJqqG7kGRmt1fZQoaAZoCWgPQwg74pANJFhiQJSGlFKUaBVN6ANoFkdAmquN7WuoxnV9lChoBmgJaA9DCK+w4H5ADnJAlIaUUpRoFUvYaBZHQJqr/aQFLWZ1fZQoaAZoCWgPQwiRRgVONpBzQJSGlFKUaBVNGAFoFkdAmq3u/+Kjz3V9lChoBmgJaA9DCFXcuMX8lnBAlIaUUpRoFUvtaBZHQJqub/Pw/gR1fZQoaAZoCWgPQwj0UNuGkc5xQJSGlFKUaBVL62gWR0Car1OwPiDNdX2UKGgGaAloD0MIdqT6zu+FckCUhpRSlGgVS7xoFkdAmq9UOd5IH3V9lChoBmgJaA9DCMqkhjbA1HBAlIaUUpRoFUvWaBZHQJqv5Yoy9El1fZQoaAZoCWgPQwhT7GgcKm5wQJSGlFKUaBVLzWgWR0Car/07r9l3dX2UKGgGaAloD0MI4UbKFonJckCUhpRSlGgVS+1oFkdAmrG/cN6PbXV9lChoBmgJaA9DCOnTKvrD1m9AlIaUUpRoFUvkaBZHQJqxyyLQ5WB1fZQoaAZoCWgPQwi5isVvistiQJSGlFKUaBVN6ANoFkdAmrHzCcf/3nV9lChoBmgJaA9DCN4f71UrMXNAlIaUUpRoFUvoaBZHQJqyGTmnwXt1fZQoaAZoCWgPQwheglMfSONwQJSGlFKUaBVLxmgWR0CaszBkI5YHdX2UKGgGaAloD0MI2J/E507tcUCUhpRSlGgVS+5oFkdAmrM3Wrfce3V9lChoBmgJaA9DCNvdA3QffnBAlIaUUpRoFUv3aBZHQJq0PtF8XvZ1fZQoaAZoCWgPQwjswg/Op/ZNQJSGlFKUaBVLvGgWR0CatFLK3d9EdX2UKGgGaAloD0MIz9vY7MizcUCUhpRSlGgVS9toFkdAmrTTzqbBoHV9lChoBmgJaA9DCNY1Wg70vmFAlIaUUpRoFU3oA2gWR0CatPR4hUzbdX2UKGgGaAloD0MI3nU25J+JYkCUhpRSlGgVTegDaBZHQJq1B+qioKl1fZQoaAZoCWgPQwiu8Zns3xdyQJSGlFKUaBVLzWgWR0CatS+lTFVDdX2UKGgGaAloD0MIhUAucSR9ckCUhpRSlGgVS+FoFkdAmrXi6lLvkXV9lChoBmgJaA9DCFsGnKWkBXFAlIaUUpRoFUv2aBZHQJq2BTkyULV1fZQoaAZoCWgPQwhFgqlm1plxQJSGlFKUaBVLsWgWR0CatjC3w1BMdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
lunarlander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9a4f8831a30431b5b04ff480689e042a05e0f52a7557da0f612481183ff447e
3
+ size 147290
lunarlander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
lunarlander/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b252a29d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b252a2a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b252a2af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b252a2b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6b252a2c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6b252a2ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6b252a2d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b252a2dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6b252a2e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b252a2ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b252a2f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b252a4040>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6b252a1a40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1681285409607770980,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNxOj7XDis/dmoTPVoEwL6YrjQ+rmybvQAAAAAAAAAATaCkvQvomD/YENW+Btgsv+C5qL11cVK+AAAAAAAAAADN/RW9KSByun6PwTYJgSaxF/Q9u9MB37UAAIA/AACAP5rUaT3D6Ri6le1qtS85nbACBW25SEyrNAAAgD8AAIA/TQ19PV8OJT/KLZ49rrQev8IF6Tw7byo9AAAAAAAAAABmpA48bJC4PyiUTT6kAZw+i3fjOlpamT0AAAAAAAAAADOHqDsfteG5rm2MuxkIkjzPyZw7Ylx+vQAAgD8AAIA/mvviPLY4Ez2WpbM8c1JGvpVN17rQPAy8AAAAAAAAAADT002+gU4eP1WW/r3kBfq+WWJbviuNVT0AAAAAAAAAAJr1FDz7Ty4/2mfSPNd9Jr8AuiY8AXqNPQAAAAAAAAAA+nQxvrbUKbzWtJu6Pju6uLGjlT07b5c5AACAPwAAgD9mItq7lPmgPhDwEjtRgta+QrkSO6O7zzsAAAAAAAAAAGNbj75wDmE/zYosvuHUBb+V75W+KhbDOwAAAAAAAAAAmmagvKElwT1Kobw98NQwvs223jz+Dk69AAAAAAAAAABmtDM9FsO/P6Yowz5AvWA+Ib73PC2K6j0AAAAAAAAAAJpBPL2PhwG8Uc+CPOWDmjx7QFW9gU2APQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.015808000000000044,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1esWgfELcUCUhpRSlIwBbJRNNwGMAXSUR0CafSASWZ7YdX2UKGgGaAloD0MIvCTOiuhTc0CUhpRSlGgVTQ8BaBZHQJp9K7kGRmt1fZQoaAZoCWgPQwj35GGhlndxQJSGlFKUaBVL+2gWR0CafUs+3YthdX2UKGgGaAloD0MIl+E/3QCNcECUhpRSlGgVS9xoFkdAmn2WNJe3QXV9lChoBmgJaA9DCA6fdCIBw3FAlIaUUpRoFU0nAWgWR0Caf0MfRu0kdX2UKGgGaAloD0MIur963PfhcUCUhpRSlGgVS9JoFkdAmoAwpSaVlnV9lChoBmgJaA9DCNMyUu/pNHJAlIaUUpRoFUvSaBZHQJqAUaaTfSB1fZQoaAZoCWgPQwhTQNr/APhtQJSGlFKUaBVLxWgWR0CagORkVerudX2UKGgGaAloD0MI/B2KAn0iX0CUhpRSlGgVTegDaBZHQJqBCIyj59F1fZQoaAZoCWgPQwh+5Nak2wJjQJSGlFKUaBVN6ANoFkdAmoJ44p+c6XV9lChoBmgJaA9DCBKkUuyownJAlIaUUpRoFUv4aBZHQJqCr3Fkxyp1fZQoaAZoCWgPQwh9PsqIC6VxQJSGlFKUaBVLrWgWR0CagtOeJ53UdX2UKGgGaAloD0MIiPTb14G6XkCUhpRSlGgVTegDaBZHQJqC6F+NLlF1fZQoaAZoCWgPQwgm5IOejSBwQJSGlFKUaBVLyWgWR0Cagye4TbnHdX2UKGgGaAloD0MII9i4/t0ScUCUhpRSlGgVS8poFkdAmoNQ/LTx5XV9lChoBmgJaA9DCEzfawiODW9AlIaUUpRoFU0BAWgWR0Cag3EwnH/+dX2UKGgGaAloD0MImrM+5RiVcUCUhpRSlGgVS7RoFkdAmoRd07r9l3V9lChoBmgJaA9DCDY8vVJWVnFAlIaUUpRoFU0vAWgWR0CahfonKGL2dX2UKGgGaAloD0MIopbmVgj4ZUCUhpRSlGgVTegDaBZHQJqGDegte2N1fZQoaAZoCWgPQwi4k4jw77hwQJSGlFKUaBVLyWgWR0Cahqe3QUpNdX2UKGgGaAloD0MIONxHbk18c0CUhpRSlGgVS9BoFkdAmoa3k1dgOXV9lChoBmgJaA9DCPet1omLr3JAlIaUUpRoFUvvaBZHQJqHCnzg/C91fZQoaAZoCWgPQwhmL9tOG4RxQJSGlFKUaBVL+GgWR0CahzUmUnogdX2UKGgGaAloD0MIGjIepZKxcUCUhpRSlGgVS7JoFkdAmodgZKnNxHV9lChoBmgJaA9DCEiLM4Y5/W5AlIaUUpRoFUuzaBZHQJqHmHCXQdF1fZQoaAZoCWgPQwgJNUOqKJFuQJSGlFKUaBVLu2gWR0CaiIJYDDCQdX2UKGgGaAloD0MIvAZ96W2wcECUhpRSlGgVS9RoFkdAmoiIuoP07XV9lChoBmgJaA9DCLkXmBUKKnJAlIaUUpRoFUvfaBZHQJqI4XKr7wd1fZQoaAZoCWgPQwj0qPi/Y55yQJSGlFKUaBVL8GgWR0CaiYY/3WWhdX2UKGgGaAloD0MIU+v9RrugcUCUhpRSlGgVS+doFkdAmoqVA7gbZXV9lChoBmgJaA9DCNtrQe9NnXBAlIaUUpRoFU0mAWgWR0Cai0CPZIxydX2UKGgGaAloD0MIYRbaOQ3hckCUhpRSlGgVS+ZoFkdAmowrH6uW8nV9lChoBmgJaA9DCFUWhV2UB3BAlIaUUpRoFUvBaBZHQJqMNcE/0NB1fZQoaAZoCWgPQwjncoOhDlZwQJSGlFKUaBVL1WgWR0CajG45cTrWdX2UKGgGaAloD0MIo7CLosdxcUCUhpRSlGgVS+RoFkdAmozKy8jAz3V9lChoBmgJaA9DCOmedY2W6m9AlIaUUpRoFUvOaBZHQJqM66RQrMF1fZQoaAZoCWgPQwhxOslWVwdwQJSGlFKUaBVL2GgWR0CajV/4qPOqdX2UKGgGaAloD0MIGsOcoM2BbkCUhpRSlGgVS+5oFkdAmo2QOnVG1HV9lChoBmgJaA9DCOfHX1oUk3BAlIaUUpRoFUvcaBZHQJqOg5myxA11fZQoaAZoCWgPQwhORL+2Pk5zQJSGlFKUaBVL3mgWR0CajvpXZGrkdX2UKGgGaAloD0MI5A8GnrtgcUCUhpRSlGgVS+poFkdAmpAZ3os7MnV9lChoBmgJaA9DCHiY9s393nJAlIaUUpRoFU1zAWgWR0CakDDaoMrmdX2UKGgGaAloD0MIpDZxcj9QcECUhpRSlGgVS8poFkdAmpD2W6bvw3V9lChoBmgJaA9DCK8nui68JnFAlIaUUpRoFUv0aBZHQJqRmRT0g8t1fZQoaAZoCWgPQwgTDyib8nVvQJSGlFKUaBVLv2gWR0Cakay2QXANdX2UKGgGaAloD0MIyhmKOx5kckCUhpRSlGgVS8toFkdAmpH7uMMqjXV9lChoBmgJaA9DCP578NolUXBAlIaUUpRoFUvUaBZHQJqSh2fTTfB1fZQoaAZoCWgPQwgeozzzMtNwQJSGlFKUaBVL6mgWR0Cak5GI9C/odX2UKGgGaAloD0MInrXbLjQmcUCUhpRSlGgVS9loFkdAmpO5jMFEA3V9lChoBmgJaA9DCC0ly0noVnFAlIaUUpRoFUvhaBZHQJqUL8uSOip1fZQoaAZoCWgPQwjABkSI6+5xQJSGlFKUaBVL12gWR0CalXXN1QqJdX2UKGgGaAloD0MIebKbGf3WcUCUhpRSlGgVS/VoFkdAmpXkVBUrCnV9lChoBmgJaA9DCA8O9iaG9XBAlIaUUpRoFUvWaBZHQJqXgYNy5qd1fZQoaAZoCWgPQwgHliNkIHRwQJSGlFKUaBVLzmgWR0Cal/FcpsoEdX2UKGgGaAloD0MImIqNeR20b0CUhpRSlGgVS7ZoFkdAmpgnqzJIUnV9lChoBmgJaA9DCPFiYYgcOmBAlIaUUpRoFU3oA2gWR0CamHQqI7/5dX2UKGgGaAloD0MIUDqRYGpLckCUhpRSlGgVS99oFkdAmpiGE4//vXV9lChoBmgJaA9DCFGiJY+nfXFAlIaUUpRoFUvuaBZHQJqZQtwrDqJ1fZQoaAZoCWgPQwiAYmTJnBViQJSGlFKUaBVN6ANoFkdAmpm/tIClrXV9lChoBmgJaA9DCDV6NUBpzHFAlIaUUpRoFUvhaBZHQJqaahAWznl1fZQoaAZoCWgPQwjUu3g/bv1wQJSGlFKUaBVL4mgWR0CampUrTYukdX2UKGgGaAloD0MI6fF7m35OckCUhpRSlGgVS9loFkdAmprBF7Uoa3V9lChoBmgJaA9DCHQkl/+Q0nBAlIaUUpRoFUviaBZHQJqdFKL876p1fZQoaAZoCWgPQwiz7bQ1Iq5wQJSGlFKUaBVL8WgWR0CanSHKwIMSdX2UKGgGaAloD0MIpics8YAocUCUhpRSlGgVS9BoFkdAmp/vKQq7RXV9lChoBmgJaA9DCN8ZbVVSNnFAlIaUUpRoFUvpaBZHQJqgnO4XoDB1fZQoaAZoCWgPQwh5AmGnWLpxQJSGlFKUaBVL8GgWR0CaoKIv8IiUdX2UKGgGaAloD0MI3+ALkykUcUCUhpRSlGgVS6toFkdAmqGS1E3KjnV9lChoBmgJaA9DCK6gaYmVDnFAlIaUUpRoFUvqaBZHQJqi8it7rs11fZQoaAZoCWgPQwjtndFWJadxQJSGlFKUaBVNRwFoFkdAmqPv7rLQonV9lChoBmgJaA9DCDyh159EdHFAlIaUUpRoFU0GAWgWR0CapZqhlDnedX2UKGgGaAloD0MIDFwea0Z0ckCUhpRSlGgVTQUBaBZHQJqmOwcHWz51fZQoaAZoCWgPQwi0VrQ5zhZwQJSGlFKUaBVLx2gWR0Capl6rvLHNdX2UKGgGaAloD0MI3/qw3ugEc0CUhpRSlGgVS+BoFkdAmqecs6JZXHV9lChoBmgJaA9DCHlXPWAen3JAlIaUUpRoFU1gAWgWR0CaqBgy/KyOdX2UKGgGaAloD0MI7YFWYIgwcECUhpRSlGgVS7NoFkdAmqhtH2AXmHV9lChoBmgJaA9DCKLxRBCna3FAlIaUUpRoFUvHaBZHQJqqG7kGRmt1fZQoaAZoCWgPQwg74pANJFhiQJSGlFKUaBVN6ANoFkdAmquN7WuoxnV9lChoBmgJaA9DCK+w4H5ADnJAlIaUUpRoFUvYaBZHQJqr/aQFLWZ1fZQoaAZoCWgPQwiRRgVONpBzQJSGlFKUaBVNGAFoFkdAmq3u/+Kjz3V9lChoBmgJaA9DCFXcuMX8lnBAlIaUUpRoFUvtaBZHQJqub/Pw/gR1fZQoaAZoCWgPQwj0UNuGkc5xQJSGlFKUaBVL62gWR0Car1OwPiDNdX2UKGgGaAloD0MIdqT6zu+FckCUhpRSlGgVS7xoFkdAmq9UOd5IH3V9lChoBmgJaA9DCMqkhjbA1HBAlIaUUpRoFUvWaBZHQJqv5Yoy9El1fZQoaAZoCWgPQwhT7GgcKm5wQJSGlFKUaBVLzWgWR0Car/07r9l3dX2UKGgGaAloD0MI4UbKFonJckCUhpRSlGgVS+1oFkdAmrG/cN6PbXV9lChoBmgJaA9DCOnTKvrD1m9AlIaUUpRoFUvkaBZHQJqxyyLQ5WB1fZQoaAZoCWgPQwi5isVvistiQJSGlFKUaBVN6ANoFkdAmrHzCcf/3nV9lChoBmgJaA9DCN4f71UrMXNAlIaUUpRoFUvoaBZHQJqyGTmnwXt1fZQoaAZoCWgPQwheglMfSONwQJSGlFKUaBVLxmgWR0CaszBkI5YHdX2UKGgGaAloD0MI2J/E507tcUCUhpRSlGgVS+5oFkdAmrM3Wrfce3V9lChoBmgJaA9DCNvdA3QffnBAlIaUUpRoFUv3aBZHQJq0PtF8XvZ1fZQoaAZoCWgPQwjswg/Op/ZNQJSGlFKUaBVLvGgWR0CatFLK3d9EdX2UKGgGaAloD0MIz9vY7MizcUCUhpRSlGgVS9toFkdAmrTTzqbBoHV9lChoBmgJaA9DCNY1Wg70vmFAlIaUUpRoFU3oA2gWR0CatPR4hUzbdX2UKGgGaAloD0MI3nU25J+JYkCUhpRSlGgVTegDaBZHQJq1B+qioKl1fZQoaAZoCWgPQwiu8Zns3xdyQJSGlFKUaBVLzWgWR0CatS+lTFVDdX2UKGgGaAloD0MIhUAucSR9ckCUhpRSlGgVS+FoFkdAmrXi6lLvkXV9lChoBmgJaA9DCFsGnKWkBXFAlIaUUpRoFUv2aBZHQJq2BTkyULV1fZQoaAZoCWgPQwhFgqlm1plxQJSGlFKUaBVLsWgWR0CatjC3w1BMdWUu"
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 310,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 2048,
82
+ "gamma": 0.99,
83
+ "gae_lambda": 0.95,
84
+ "ent_coef": 0.0,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 10,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
lunarlander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4f905e558b1d8b315249fed5afcfa973653c6c3ea8895e750e2bb7acc432b1b
3
+ size 87929
lunarlander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21679498b77ef989f1cde27beacbc2c80d33dc23b947481091bf5d36ad5898a6
3
+ size 43329
lunarlander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunarlander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (184 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 271.080955215498, "std_reward": 16.66880777644242, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-12T08:22:19.270932"}