File size: 1,214 Bytes
254bcc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from typing import Dict, List, Any
import torch
class EndpointHandler():
def __init__(self, path=""):
self.base_model_name = "Salesforce/blip2-opt-2.7b"
self.model_name = "sooh-j/blip2-vizwizqa"
self.base_model = Blip2ForConditionalGeneration.from_pretrained(self.base_model_name,
load_in_8bit=True)
self.processor = Blip2Processor.from_pretrained(self.base_model_name)
self.model = PeftModel.from_pretrained(self.model_name, self.base_model_name)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
data = data.pop("inputs", data)
image = data.image
question = data.question
prompt = f"Question: {question}, Answer:"
processed = self.processor(images=image, prompt, return_tensors="pt").to(self.device)
out = self.model.generate(**processed)
return self.processor.decode(out[0], skip_special_tokens=True) |