blip2-vizwizqa / handler.py
sooh-j's picture
Update handler.py
7d9abb7 verified
raw
history blame
4.16 kB
# import sys
# import base64
# import logging
# import copy
import numpy as np
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from typing import Dict, List, Any
from PIL import Image
from transformers import pipeline
import requests
import torch
class EndpointHandler():
def __init__(self, path=""):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model_base = "Salesforce/blip2-opt-2.7b"
self.model_name = "sooh-j/blip2-vizwizqa"
# self.base_model = Blip2ForConditionalGeneration.from_pretrained(self.model_base, load_in_8bit=True)
# self.pipe = Blip2ForConditionalGeneration.from_pretrained(self.model_base, load_in_8bit=True, torch_dtype=torch.float16)
self.processor = Blip2Processor.from_pretrained(self.model_name)
self.model = BlipForQuestionAnswering.from_pretrained(self.model_name).to(self.device)
# self.model = PeftModel.from_pretrained(self.model_name, self.base_model_name).to(self.device)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
# def _generate_answer(
# self,
# model_path,
# prompt,
# # num_inference_steps=25,
# # guidance_scale=7.5,
# # num_images_per_prompt=1
# ):
# self.pipe.to(self.device)
# # pil_images = self.pipe(
# # prompt=prompt,
# # num_inference_steps=num_inference_steps,
# # guidance_scale=guidance_scale,
# # num_images_per_prompt=num_images_per_prompt).images
# # np_images = []
# # for i in range(len(pil_images)):
# # np_images.append(np.asarray(pil_images[i]))
# return np.stack(np_images, axis=0)
# inputs = data.get("inputs")
# imageBase64 = inputs.get("image")
# # imageURL = inputs.get("image")
# text = inputs.get("text")
# # print(imageURL)
# # print(text)
# # image = Image.open(requests.get(imageBase64, stream=True).raw)
# image = Image.open(BytesIO(base64.b64decode(imageBase64.split(",")[1].encode())))
# inputs = self.processor(text=text, images=image, return_tensors="pt", padding=True)
# outputs = self.model(**inputs)
# embeddings = outputs.image_embeds.detach().numpy().flatten().tolist()
# return { "embeddings": embeddings }
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str` | `PIL.Image` | `np.array`)
kwargs
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
# await hf.visualQuestionAnswering({
# model: 'dandelin/vilt-b32-finetuned-vqa',
# inputs: {
# question: 'How many cats are lying down?',
# image: await (await fetch('https://placekitten.com/300/300')).blob()
# }
# })
inputs = data.pop("inputs", data)
try:
imageBase64 = inputs["image"]
image = Image.open(BytesIO(base64.b64decode(imageBase64.split(",")[1].encode())))
except:
image_url = inputs['image']
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
question = inputs["question"]
# data = data.pop("inputs", data)
# data = data.pop("image", image)
# image = Image.open(requests.get(imageBase64, stream=True).raw)
# image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
prompt = f"Question: {question}, Answer:"
processed = self.processor(images=image, text=prompt, return_tensors="pt").to(self.device, torch.float16)
# answer = self._generate_answer(
# model_path, prompt, image,
# )
out = self.model.generate(**processed)
result = {}
text_output = self.processor.decode(out[0], skip_special_tokens=True)
result["text_output"] = text_output
return result