|
import numpy as np |
|
from transformers import Blip2Processor, Blip2ForConditionalGeneration, BlipForQuestionAnswering, BitsAndBytesConfig |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
from typing import Dict, List, Any |
|
from PIL import Image |
|
from transformers import pipeline |
|
import requests |
|
import torch |
|
from io import BytesIO |
|
import base64 |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
print("device:",self.device) |
|
|
|
|
|
self.model_name = "Salesforce/blip2-opt-2.7b" |
|
|
|
self.processor = AutoProcessor.from_pretrained(self.model_name) |
|
self.model = Blip2ForConditionalGeneration.from_pretrained(self.model_name, |
|
device_map="auto", |
|
).to(self.device) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs = data.get("inputs") |
|
imageBase64 = inputs.get("image") |
|
question = inputs.get("question") |
|
|
|
if ('http:' in imageBase64) or ('https:' in imageBase64): |
|
image = Image.open(requests.get(imageBase64, stream=True).raw) |
|
else: |
|
image = Image.open(BytesIO(base64.b64decode(imageBase64.split(",")[0].encode()))) |
|
|
|
prompt = f"Question: {question}, Answer:" |
|
processed = self.processor(images=image, text=prompt, return_tensors="pt").to(self.device) |
|
|
|
with torch.no_grad(): |
|
out = self.model.generate(**processed, |
|
max_new_tokens=20, |
|
temperature = 0.5, |
|
do_sample=True, |
|
top_k=50, |
|
top_p=0.9, |
|
repetition_penalty=1.2 |
|
).to(self.device) |
|
|
|
result = {} |
|
text_output = self.processor.decode(out[0], skip_special_tokens=True) |
|
result["text_output"] = text_output |
|
score = 0 |
|
|
|
return [{"answer":text_output,"score":score}] |