import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration from typing import Dict, List, Any import torch import sys import base64 import logging import copy import numpy as np class EndpointHandler(): def __init__(self, path=""): self.model_base = "Salesforce/blip2-opt-2.7b" self.model_name = "sooh-j/blip2-vizwizqa" self.base_model = Blip2ForConditionalGeneration.from_pretrained(self.model_base, load_in_8bit=True) self.pipe = Blip2ForConditionalGeneration.from_pretrained(self.model_base, load_in_8bit=True, torch_dtype=torch.float16) self.processor = Blip2Processor.from_pretrained(self.base_model_name) self.model = PeftModel.from_pretrained(self.model_name, self.base_model_name) self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model.to(self.device) # def _generate_answer( # self, # model_path, # prompt, # # num_inference_steps=25, # # guidance_scale=7.5, # # num_images_per_prompt=1 # ): # self.pipe.to(self.device) # # pil_images = self.pipe( # # prompt=prompt, # # num_inference_steps=num_inference_steps, # # guidance_scale=guidance_scale, # # num_images_per_prompt=num_images_per_prompt).images # # np_images = [] # # for i in range(len(pil_images)): # # np_images.append(np.asarray(pil_images[i])) # return np.stack(np_images, axis=0) # inputs = data.get("inputs") # imageBase64 = inputs.get("image") # # imageURL = inputs.get("image") # text = inputs.get("text") # # print(imageURL) # # print(text) # # image = Image.open(requests.get(imageBase64, stream=True).raw) # image = Image.open(BytesIO(base64.b64decode(imageBase64.split(",")[1].encode()))) # inputs = self.processor(text=text, images=image, return_tensors="pt", padding=True) # outputs = self.model(**inputs) # embeddings = outputs.image_embeds.detach().numpy().flatten().tolist() # return { "embeddings": embeddings } def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: inputs = data.get("inputs") imageBase64 = inputs.get("image") question = inputs.get("text") # data = data.pop("inputs", data) # data = data.pop("image", image) # image = Image.open(requests.get(imageBase64, stream=True).raw) image = Image.open(BytesIO(base64.b64decode(imageBase64.split(",")[1].encode()))) prompt = f"Question: {question}, Answer:" processed = self.processor(images=image, text=prompt, return_tensors="pt").to(self.device) # answer = self._generate_answer( # model_path, prompt, image, # ) out = self.model.generate(**processed) return self.processor.decode(out[0], skip_special_tokens=True)