File size: 13,738 Bytes
169b6fb |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x797f217f8ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x797f217f8d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x797f217f8dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x797f217f8e50>", "_build": "<function ActorCriticPolicy._build at 0x797f217f8ee0>", "forward": "<function ActorCriticPolicy.forward at 0x797f217f8f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x797f217f9000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x797f217f9090>", "_predict": "<function ActorCriticPolicy._predict at 0x797f217f9120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x797f217f91b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x797f217f9240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x797f217f92d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x797f22630240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692876279949737950, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr3ErxSKNO5nmbHOo81dTZVYuo7ldvruQAAgD8AAIA/OqZWPp/N2j4txMe+WgKdvi3mlzzaiaK+AAAAAAAAAADNUXO9FDioulrqHzs/Efy1ImUauoLy8bQAAIA/AACAP00tAz5RuIg/MUejPvm7+r5XSmE+JQPPPQAAAAAAAAAAM0k4vVIYs7lAsdY80L88veibIDtqAya+AAAAAAAAgD8AcPE7bKTRu6pghTtQZbM8ni8svY/HlT0AAIA/AACAP5pulz0Iu8w+WiUvvknAb761FG29eHl5vQAAAAAAAAAAZoZ1PY/qf7qukhS8mZEsOdVfGztyiJ24AACAPwAAgD8zD249q88cP/vaZ74QKsq+05jAvN05kj0AAAAAAAAAAO+aCb9P4iG+GVUhPVxt27sUSpQ+kC9fPQAAgD8AAIA/TYi6vWt8JT9n3aM92n+dvivRRrx+ruQ9AAAAAAAAAABN6KW9D2wYvG7F0Dz5dBG9/TUyuvRSPbwAAIA/AACAPwB2vjyPFl26ZVaJOJH3JjL9vAC6rvebtwAAgD8AAIA/M63nPI82Lrpy02468RxbNTk0xDr28I25AACAPwAAgD8AYn4944kzP4C7870BE7++PSKyPJaw9L0AAAAAAAAAAGYTIr3/Drw/t+QOvyKplD4Tlq482YagPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDeuFHrhR+MAWyUTYoBjAF0lEdAolhyvX9R8HV9lChoBkdAcSY9KEnLJWgHTTwBaAhHQKJYyWj45951fZQoaAZHQHMHadQO4G5oB01lAWgIR0CiWOtz0Yj0dX2UKGgGR0Bwy68scyWSaAdNCAFoCEdAoll+3vx6OnV9lChoBkdAbYU9A5aNdmgHTQcBaAhHQKJaj/3nIQx1fZQoaAZHQGyQ35FgDzRoB01gAWgIR0CiWqf4h2W6dX2UKGgGR0BxHWepXIU8aAdNAQFoCEdAolqt7rs0HnV9lChoBkdAcUFdiDujRGgHTS0BaAhHQKJateUpuuR1fZQoaAZHQHCI3OB19v1oB0v0aAhHQKJa0tLcsUZ1fZQoaAZHQHFrho/RmbtoB0v8aAhHQKJbFA+pwS91fZQoaAZHQHByU+TvAoJoB00pAWgIR0CiW9pSJj2BdX2UKGgGR0ByzltLteD4aAdL92gIR0CiXFDiwSrYdX2UKGgGR0BxbY3vQWvbaAdNCgFoCEdAolxX1jAi3XV9lChoBkdAcnSo8p1A7mgHTVMBaAhHQKJceiA2AG11fZQoaAZHQHGDqZUkv9NoB02WAWgIR0CiXJzEit7sdX2UKGgGR0Bw6/FvQ4S6aAdNXgFoCEdAoly/nMdLhHV9lChoBkdAbwhdxAB1cWgHTTEBaAhHQKJc3BE8aGZ1fZQoaAZHQHHxv1xsEaFoB00XAWgIR0CiXy9jwx33dX2UKGgGR0BvUA2AG0NSaAdNHQFoCEdAol9acI7eVXV9lChoBkdAbw8eOn2qUGgHTZEBaAhHQKJfhpbD/ER1fZQoaAZHQHHjhd6cAipoB02fAWgIR0CiX5uCGvfTdX2UKGgGR0ByU3n+yZ8baAdNbgFoCEdAol+hzLfUF3V9lChoBkdAcCQy/sVtXWgHTSYBaAhHQKJgASr5qM51fZQoaAZHQHHC6FuejEhoB01FAWgIR0CiYAg4GUwBdX2UKGgGR0BxNVRuTA32aAdNTgFoCEdAomAcFdLQHHV9lChoBkdAccsFrl/6PGgHS+9oCEdAomBhwqAjIXV9lChoBkdAcDic3VCoj2gHTSIBaAhHQKJgwWXTmXB1fZQoaAZHQHDx8pG4I8hoB02WAWgIR0CiYYQKjSG8dX2UKGgGR0Bw1DR0EHMVaAdNLwFoCEdAomIQvcrRSnV9lChoBkdAcqm5MDfWMGgHTVQBaAhHQKJiPdKujh11fZQoaAZHQG+wdbgTAWVoB011AWgIR0CiYxj/MnqndX2UKGgGR0BxnKJcgQpXaAdNhwFoCEdAomMikbgjyHV9lChoBkdAcFAsKb8WK2gHTZoBaAhHQKJj+SFGoaV1fZQoaAZHQG2qZD7ZWaNoB00dAWgIR0CiZFfgBLf2dX2UKGgGR0BwZEA0bcXWaAdNFAFoCEdAomR6f4AS4HV9lChoBkdAcoxvAoG6gGgHTRoBaAhHQKJkqmICU5d1fZQoaAZHQG4FOhK15SpoB01FAWgIR0CiZTwdjoZAdX2UKGgGR0BwuocNpdrwaAdNBQFoCEdAomWN8b70nXV9lChoBkdAbfCiL2pQ12gHTSMBaAhHQKJlr8R+SbJ1fZQoaAZHQHDDP4M4LkVoB01cAWgIR0CiZkVwo9cKdX2UKGgGR0Bu1Zx//echaAdNgwFoCEdAomaVTefqYHV9lChoBkdAcOAIDYAbQ2gHTQYBaAhHQKJm8TM7lq91fZQoaAZHQG+7/z8P4EhoB02BAWgIR0CiZwmFSKm9dX2UKGgGR0BxZIy+HrQgaAdNiQFoCEdAomcUNrj5sXV9lChoBkdAbDZiT+vQnmgHTUIBaAhHQKJnX9R77bd1fZQoaAZHQHBoG606YE5oB01sAWgIR0CiaQFcQiA2dX2UKGgGR0ByK7zasZHeaAdNGwFoCEdAomkuLk0aZXV9lChoBkdAbky2KEWZZ2gHTQQBaAhHQKJpRKeTV2B1fZQoaAZHQHI6yGzru6VoB01SAWgIR0CiaWqv/zasdX2UKGgGR0Bxd6pcX3xnaAdNXwFoCEdAommltALRbHV9lChoBkdAczRFmnO0LWgHTSQBaAhHQKJ1pc1wYLt1fZQoaAZHQG36eWv8qF1oB01BAWgIR0CiddZJK8L8dX2UKGgGR0Bu3Bkwvg3taAdNAAFoCEdAonX00tRNy3V9lChoBkdAcMXW3Sa3JGgHS/doCEdAoncN4zJp4HV9lChoBkdAccKOd5IH1WgHTVwBaAhHQKJ3DCb+cYt1fZQoaAZHQHJ4pdGAkLRoB0v8aAhHQKJ3NmcOLBN1fZQoaAZHQG8DhDw6QvJoB00VAWgIR0CieAYHgP3BdX2UKGgGR0Byj2T6i0v5aAdNOQFoCEdAongkxmCiAXV9lChoBkdAbkQ8nuy/sWgHTVsBaAhHQKJ4Yd4FA3V1fZQoaAZHQGxqM54nndRoB02WAWgIR0CieGnnEETydX2UKGgGR0Bw98DNhVlxaAdNqQFoCEdAonloMBp5/3V9lChoBkdAcm5OIZZSvWgHTQEBaAhHQKJ5Z3V09yN1fZQoaAZHQHF4tugpSaVoB00fAWgIR0CiecivPkaNdX2UKGgGR0BvIH3evZAZaAdNMgFoCEdAonoISi/O+3V9lChoBkdAcNTNSZSeiGgHTQoBaAhHQKJ6HjnV5KR1fZQoaAZHQHHbzs2NvO1oB00oAWgIR0CiejTposZpdX2UKGgGR0BwiwLc9GI9aAdNCQFoCEdAonpIc5sCT3V9lChoBkdAcMkLBKtga2gHTRQBaAhHQKJ6idEsrd51fZQoaAZHQHCDRfv4M4NoB01eAWgIR0Cieor1mJ3xdX2UKGgGR0BugVfmcOLBaAdNCQFoCEdAontIXqJMx3V9lChoBkdAct2UUwi7kGgHS/BoCEdAonwA7T2FnXV9lChoBkdAcVcWUr08NmgHTUIBaAhHQKJ8IMo+fRN1fZQoaAZHQGz/naFmFrVoB00gAWgIR0CifNaCUX54dX2UKGgGR0BxdmrR0EHMaAdNTAFoCEdAon1ARPGhmHV9lChoBkdAcXmV4oqkM2gHTX4BaAhHQKJ9WibDuSh1fZQoaAZHQG2m7qIJqqRoB0vwaAhHQKJ+GHbAUL51fZQoaAZHQG8LW/ag261oB00GAWgIR0CifjO9WZJDdX2UKGgGR0BxfSJuVHFxaAdNKAFoCEdAon6PUlRgqnV9lChoBkdAbI7ddE9dNWgHTY0BaAhHQKJ+oa6z3RJ1fZQoaAZHQHFHX3xnWatoB0v9aAhHQKJ+tRKHwgF1fZQoaAZHQHEJbpaA4GVoB00nAWgIR0Cifvaab4JvdX2UKGgGR0BxdBBRhttRaAdNCQFoCEdAon/M2P1cuHV9lChoBkdAcqcPBi1Aq2gHS+1oCEdAooBL6JqIrXV9lChoBkdAcfBcfeUILWgHTc8BaAhHQKKBCRISUTt1fZQoaAZHQEhxMQEpy6toB0vXaAhHQKKBGpiqhlF1fZQoaAZHQHBfM23rleZoB02ZAWgIR0CigWkSVW0adX2UKGgGR0BxAeDFqBVdaAdL7GgIR0CigZL3Cbc5dX2UKGgGR0BxFbd/J/5MaAdNUQFoCEdAooIGZuyeI3V9lChoBkdAcbOtEofCAWgHS/FoCEdAooJ5mCiAUnV9lChoBkdAcq/c1wYLs2gHS/VoCEdAooMNzhgmZ3V9lChoBkdAb4Ju2JBPbmgHS/1oCEdAooMcka/ATXV9lChoBkdAcOCMHryDqWgHTRoBaAhHQKKDId5IH1R1fZQoaAZHQHG5LNGEwnJoB01dAWgIR0CigyXAM2FWdX2UKGgGR0BxXmMUAT7EaAdNnwJoCEdAooTJYLb5/XV9lChoBkdAcRLcSGrS3WgHS/9oCEdAooTv9LpRoHV9lChoBkdAcihNtZV4o2gHTTEBaAhHQKKFVvES/TN1fZQoaAZHQHHx6WPcSGtoB01kAWgIR0CihVi48U22dX2UKGgGR0BvpQrhBJI2aAdL/2gIR0CihaXnZCfIdX2UKGgGR0BrzMAT7EYPaAdNGQFoCEdAooaJuXNTtXV9lChoBkdAciegXMyJsWgHTSgBaAhHQKKHICeVcD91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |