File size: 4,200 Bytes
0cb424b
 
 
 
 
 
 
 
 
b91c1ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
license: apache-2.0
datasets:
- bigcode/self-oss-instruct-sc2-exec-filter-50k
library_name: transformers
pipeline_tag: text-generation
tags:
- code
---
# README

## Model Summary

This is a instruction-tuned version of the [Starcoder2-3B model](https://huggingface.co/bigcode/starcoder2-3b). It has been trained using the same [repository](https://github.com/bigcode-project/starcoder2-self-align) and [dataset](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k) used for Starcoder2-15B. It uses the same prompt generation technique as the Starcoder2-15B mode. So, it can be used as a drop in replacement by just changing the model path. 

* [Paper](https://arxiv.org/abs/2402.19173)

## Intended Use

Running code language models locally. This model can easily run on:

* 8 GB and 10 GB VRAM machines with FP16
* 6 GB VRAM machines with INT8
* 4 GB VRAM machines with INT4

## Example

**Using FP16**

```python
import transformers
import torch

pipeline = transformers.pipeline(
    model="outputs_starcoder3b_4e",
    task="text-generation",
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

def respond(instruction: str, response_prefix: str) -> str:
    messages = [{"role": "user", "content": instruction}]
    prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False)
    prompt += response_prefix

    teminators = [
        pipeline.tokenizer.eos_token_id,
        pipeline.tokenizer.convert_tokens_to_ids("###"),
    ]

    result = pipeline(
        prompt,
        max_length=1024,
        num_return_sequences=1,
        do_sample=False,
        eos_token_id=teminators,
        pad_token_id=pipeline.tokenizer.eos_token_id,
        truncation=True,
    )
    response = response_prefix + result[0]["generated_text"][len(prompt) :].split("###")[0].rstrip()
    return response


instruction = "Write the Transformer encoder in PyTorch."
response_prefix = ""

print(respond(instruction, response_prefix))
```

*Output:*

````
```python
import torch
import torch.nn as nn

class TransformerEncoder(nn.Module):
    def __init__(self, d_model, nhead, num_layers, dim_feedforward=2048, dropout=0.1):
        super(TransformerEncoder, self).__init__()
        self.encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)
        self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers)

    def forward(self, src):
        return self.transformer_encoder(src)
```
````

## Training

* 4 epochs
* Training type: Full fine tuning
* Training time: ~4 hours
* Batch size: 2
* Gradient accumulation step: 256
* Sequence length: 1280

### Exact Training Command Used

**See the [repository](https://github.com/bigcode-project/starcoder2-self-align) for setup details.**

```
MODEL_KEY=bigcode/starcoder2-3b
LR=1e-5
EPOCH=4
SEQ_LEN=1280
WARMUP_RATIO=0.05
OUTPUT_DIR=outputs_starcoder3b_4e
DATASET_FILE=train_data.jsonl
accelerate launch -m star_align.train \
    --model_key $MODEL_KEY \
    --model_name_or_path $MODEL_KEY \
    --use_flash_attention True \
    --datafile_paths $DATASET_FILE \
    --output_dir $OUTPUT_DIR \
    --bf16 True \
    --num_train_epochs $EPOCH \
    --max_training_seq_length $SEQ_LEN \
    --pad_to_max_length False \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 256 \
    --group_by_length False \
    --ddp_find_unused_parameters False \
    --logging_steps 1 \
    --log_level info \
    --optim adafactor \
    --max_grad_norm -1 \
    --warmup_ratio $WARMUP_RATIO \
    --learning_rate $LR \
    --lr_scheduler_type linear \
    --attention_dropout 0.0 \
    --residual_dropout 0.0 \
    --embedding_dropout 0.0
```

### Hardware

* 40 GB NVIDIA A100 

## Attributions

* [Starcoder2 Self Align codebase](https://github.com/bigcode-project/starcoder2-self-align)
* [Starcoder2 Self Align dataset](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k)
* [Starcoder2 paper](https://arxiv.org/abs/2402.19173)

## License

The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).