File size: 2,164 Bytes
af0bd30 693e88e af0bd30 693e88e af0bd30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: microsoft/git-base
tags:
- generated_from_trainer
model-index:
- name: git-base-CocoCaptions
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# git-base-CocoCaptions
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the Smaller COCO dataset for image captioning.
It achieves the following results on the evaluation set:
- Loss: 0.2839
- Wer Score: 1.0
## Model description
More information needed
## Intended uses & limitations
University researcg project
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Score |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| No log | 0.8 | 100 | 0.2959 | 1.0 |
| No log | 1.6 | 200 | 0.2859 | 1.0 |
| No log | 2.4 | 300 | 0.2821 | 1.0 |
| No log | 3.2 | 400 | 0.2863 | 1.0 |
| 0.4331 | 4.0 | 500 | 0.2833 | 1.0 |
| 0.4331 | 4.8 | 600 | 0.2837 | 1.0 |
| 0.4331 | 5.6 | 700 | 0.2827 | 1.0 |
| 0.4331 | 6.4 | 800 | 0.2850 | 1.0 |
| 0.4331 | 7.2 | 900 | 0.2870 | 1.0 |
| 0.2566 | 8.0 | 1000 | 0.2842 | 1.0 |
| 0.2566 | 8.8 | 1100 | 0.2841 | 1.0 |
| 0.2566 | 9.6 | 1200 | 0.2839 | 1.0 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|