File size: 17,210 Bytes
05b4fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
from .ncsnpp_utils import layers, layerspp, normalization
import torch.nn as nn
import functools
import torch
import numpy as np
from .shared import BackboneRegistry
ResnetBlockDDPM = layerspp.ResnetBlockDDPMpp
ResnetBlockBigGAN = layerspp.ResnetBlockBigGANpp
Combine = layerspp.Combine
conv3x3 = layerspp.conv3x3
conv1x1 = layerspp.conv1x1
get_act = layers.get_act
get_normalization = normalization.get_normalization
default_initializer = layers.default_init
@BackboneRegistry.register("ncsnpp_48k")
class NCSNpp_48k(nn.Module):
"""NCSN++ model, adapted from https://github.com/yang-song/score_sde repository"""
@staticmethod
def add_argparse_args(parser):
parser.add_argument("--ch_mult",type=int, nargs='+', default=[1,1,2,2,2,2,2])
parser.add_argument("--num_res_blocks", type=int, default=2)
parser.add_argument("--attn_resolutions", type=int, nargs='+', default=[])
parser.add_argument("--nf", type=int, default=128, help="Number of channels to use in the model")
parser.add_argument("--no-centered", dest="centered", action="store_false", help="The data is not centered [-1, 1]")
parser.add_argument("--centered", dest="centered", action="store_true", help="The data is centered [-1, 1]")
parser.add_argument("--progressive", type=str, default='none', help="Progressive downsampling method")
parser.add_argument("--progressive_input", type=str, default='none', help="Progressive upsampling method")
parser.set_defaults(centered=True)
return parser
def __init__(self,
scale_by_sigma = True,
nonlinearity = 'swish',
nf = 128,
ch_mult = (1, 1, 2, 2, 2, 2, 2),
num_res_blocks = 2,
attn_resolutions = (),
resamp_with_conv = True,
conditional = True,
fir = True,
fir_kernel = [1, 3, 3, 1],
skip_rescale = True,
resblock_type = 'biggan',
progressive = 'none',
progressive_input = 'none',
progressive_combine = 'sum',
init_scale = 0.,
fourier_scale = 16,
image_size = 256,
embedding_type = 'fourier',
dropout = .0,
centered = True,
**unused_kwargs
):
super().__init__()
self.act = act = get_act(nonlinearity)
self.nf = nf = nf
ch_mult = ch_mult
self.num_res_blocks = num_res_blocks = num_res_blocks
self.attn_resolutions = attn_resolutions
dropout = dropout
resamp_with_conv = resamp_with_conv
self.num_resolutions = num_resolutions = len(ch_mult)
self.all_resolutions = all_resolutions = [image_size // (2 ** i) for i in range(num_resolutions)]
self.conditional = conditional = conditional # noise-conditional
self.centered = centered
self.scale_by_sigma = scale_by_sigma
fir = fir
fir_kernel = fir_kernel
self.skip_rescale = skip_rescale = skip_rescale
self.resblock_type = resblock_type = resblock_type.lower()
self.progressive = progressive = progressive.lower()
self.progressive_input = progressive_input = progressive_input.lower()
self.embedding_type = embedding_type = embedding_type.lower()
init_scale = init_scale
assert progressive in ['none', 'output_skip', 'residual']
assert progressive_input in ['none', 'input_skip', 'residual']
assert embedding_type in ['fourier', 'positional']
combine_method = progressive_combine.lower()
combiner = functools.partial(Combine, method=combine_method)
num_channels = 4 # x.real, x.imag, y.real, y.imag
self.output_layer = nn.Conv2d(num_channels, 2, 1)
modules = []
# timestep/noise_level embedding
if embedding_type == 'fourier':
# Gaussian Fourier features embeddings.
modules.append(layerspp.GaussianFourierProjection(
embedding_size=nf, scale=fourier_scale
))
embed_dim = 2 * nf
elif embedding_type == 'positional':
embed_dim = nf
else:
raise ValueError(f'embedding type {embedding_type} unknown.')
if conditional:
modules.append(nn.Linear(embed_dim, nf * 4))
modules[-1].weight.data = default_initializer()(modules[-1].weight.shape)
nn.init.zeros_(modules[-1].bias)
modules.append(nn.Linear(nf * 4, nf * 4))
modules[-1].weight.data = default_initializer()(modules[-1].weight.shape)
nn.init.zeros_(modules[-1].bias)
AttnBlock = functools.partial(layerspp.AttnBlockpp,
init_scale=init_scale, skip_rescale=skip_rescale)
Upsample = functools.partial(layerspp.Upsample,
with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel)
if progressive == 'output_skip':
self.pyramid_upsample = layerspp.Upsample(fir=fir, fir_kernel=fir_kernel, with_conv=False)
elif progressive == 'residual':
pyramid_upsample = functools.partial(layerspp.Upsample, fir=fir,
fir_kernel=fir_kernel, with_conv=True)
Downsample = functools.partial(layerspp.Downsample, with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel)
if progressive_input == 'input_skip':
self.pyramid_downsample = layerspp.Downsample(fir=fir, fir_kernel=fir_kernel, with_conv=False)
elif progressive_input == 'residual':
pyramid_downsample = functools.partial(layerspp.Downsample,
fir=fir, fir_kernel=fir_kernel, with_conv=True)
if resblock_type == 'ddpm':
ResnetBlock = functools.partial(ResnetBlockDDPM, act=act,
dropout=dropout, init_scale=init_scale,
skip_rescale=skip_rescale, temb_dim=nf * 4)
elif resblock_type == 'biggan':
ResnetBlock = functools.partial(ResnetBlockBigGAN, act=act,
dropout=dropout, fir=fir, fir_kernel=fir_kernel,
init_scale=init_scale, skip_rescale=skip_rescale, temb_dim=nf * 4)
else:
raise ValueError(f'resblock type {resblock_type} unrecognized.')
# Downsampling block
channels = num_channels
if progressive_input != 'none':
input_pyramid_ch = channels
modules.append(conv3x3(channels, nf))
hs_c = [nf]
in_ch = nf
for i_level in range(num_resolutions):
# Residual blocks for this resolution
for i_block in range(num_res_blocks):
out_ch = nf * ch_mult[i_level]
modules.append(ResnetBlock(in_ch=in_ch, out_ch=out_ch))
in_ch = out_ch
if all_resolutions[i_level] in attn_resolutions:
modules.append(AttnBlock(channels=in_ch))
hs_c.append(in_ch)
if i_level != num_resolutions - 1:
if resblock_type == 'ddpm':
modules.append(Downsample(in_ch=in_ch))
else:
modules.append(ResnetBlock(down=True, in_ch=in_ch))
if progressive_input == 'input_skip':
modules.append(combiner(dim1=input_pyramid_ch, dim2=in_ch))
if combine_method == 'cat':
in_ch *= 2
elif progressive_input == 'residual':
modules.append(pyramid_downsample(in_ch=input_pyramid_ch, out_ch=in_ch))
input_pyramid_ch = in_ch
hs_c.append(in_ch)
in_ch = hs_c[-1]
modules.append(ResnetBlock(in_ch=in_ch))
modules.append(AttnBlock(channels=in_ch))
modules.append(ResnetBlock(in_ch=in_ch))
pyramid_ch = 0
# Upsampling block
for i_level in reversed(range(num_resolutions)):
for i_block in range(num_res_blocks + 1): # +1 blocks in upsampling because of skip connection from combiner (after downsampling)
out_ch = nf * ch_mult[i_level]
modules.append(ResnetBlock(in_ch=in_ch + hs_c.pop(), out_ch=out_ch))
in_ch = out_ch
if all_resolutions[i_level] in attn_resolutions:
modules.append(AttnBlock(channels=in_ch))
if progressive != 'none':
if i_level == num_resolutions - 1:
if progressive == 'output_skip':
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32),
num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, channels, init_scale=init_scale))
pyramid_ch = channels
elif progressive == 'residual':
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, in_ch, bias=True))
pyramid_ch = in_ch
else:
raise ValueError(f'{progressive} is not a valid name.')
else:
if progressive == 'output_skip':
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32),
num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, channels, bias=True, init_scale=init_scale))
pyramid_ch = channels
elif progressive == 'residual':
modules.append(pyramid_upsample(in_ch=pyramid_ch, out_ch=in_ch))
pyramid_ch = in_ch
else:
raise ValueError(f'{progressive} is not a valid name')
if i_level != 0:
if resblock_type == 'ddpm':
modules.append(Upsample(in_ch=in_ch))
else:
modules.append(ResnetBlock(in_ch=in_ch, up=True))
assert not hs_c
if progressive != 'output_skip':
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32),
num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, channels, init_scale=init_scale))
self.all_modules = nn.ModuleList(modules)
def forward(self, x, time_cond):
# timestep/noise_level embedding; only for continuous training
modules = self.all_modules
m_idx = 0
# Convert real and imaginary parts of (x,y) into four channel dimensions
x = torch.cat((x[:,[0],:,:].real, x[:,[0],:,:].imag,
x[:,[1],:,:].real, x[:,[1],:,:].imag), dim=1)
if self.embedding_type == 'fourier':
# Gaussian Fourier features embeddings.
used_sigmas = time_cond
temb = modules[m_idx](torch.log(used_sigmas))
m_idx += 1
elif self.embedding_type == 'positional':
# Sinusoidal positional embeddings.
timesteps = time_cond
used_sigmas = self.sigmas[time_cond.long()]
temb = layers.get_timestep_embedding(timesteps, self.nf)
else:
raise ValueError(f'embedding type {self.embedding_type} unknown.')
if self.conditional:
temb = modules[m_idx](temb)
m_idx += 1
temb = modules[m_idx](self.act(temb))
m_idx += 1
else:
temb = None
if not self.centered:
# If input data is in [0, 1]
x = 2 * x - 1.
# Downsampling block
input_pyramid = None
if self.progressive_input != 'none':
input_pyramid = x
# Input layer: Conv2d: 4ch -> 128ch
hs = [modules[m_idx](x)]
m_idx += 1
# Down path in U-Net
for i_level in range(self.num_resolutions):
# Residual blocks for this resolution
for i_block in range(self.num_res_blocks):
h = modules[m_idx](hs[-1], temb)
m_idx += 1
# Attention layer (optional)
if h.shape[-2] in self.attn_resolutions: # edit: check H dim (-2) not W dim (-1)
h = modules[m_idx](h)
m_idx += 1
hs.append(h)
# Downsampling
if i_level != self.num_resolutions - 1:
if self.resblock_type == 'ddpm':
h = modules[m_idx](hs[-1])
m_idx += 1
else:
h = modules[m_idx](hs[-1], temb)
m_idx += 1
if self.progressive_input == 'input_skip': # Combine h with x
input_pyramid = self.pyramid_downsample(input_pyramid)
h = modules[m_idx](input_pyramid, h)
m_idx += 1
elif self.progressive_input == 'residual':
input_pyramid = modules[m_idx](input_pyramid)
m_idx += 1
if self.skip_rescale:
input_pyramid = (input_pyramid + h) / np.sqrt(2.)
else:
input_pyramid = input_pyramid + h
h = input_pyramid
hs.append(h)
h = hs[-1] # actualy equal to: h = h
h = modules[m_idx](h, temb) # ResNet block
m_idx += 1
h = modules[m_idx](h) # Attention block
m_idx += 1
h = modules[m_idx](h, temb) # ResNet block
m_idx += 1
pyramid = None
# Upsampling block
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = modules[m_idx](torch.cat([h, hs.pop()], dim=1), temb)
m_idx += 1
# edit: from -1 to -2
if h.shape[-2] in self.attn_resolutions:
h = modules[m_idx](h)
m_idx += 1
if self.progressive != 'none':
if i_level == self.num_resolutions - 1:
if self.progressive == 'output_skip':
pyramid = self.act(modules[m_idx](h)) # GroupNorm
m_idx += 1
pyramid = modules[m_idx](pyramid) # Conv2D: 256 -> 4
m_idx += 1
elif self.progressive == 'residual':
pyramid = self.act(modules[m_idx](h))
m_idx += 1
pyramid = modules[m_idx](pyramid)
m_idx += 1
else:
raise ValueError(f'{self.progressive} is not a valid name.')
else:
if self.progressive == 'output_skip':
pyramid = self.pyramid_upsample(pyramid) # Upsample
pyramid_h = self.act(modules[m_idx](h)) # GroupNorm
m_idx += 1
pyramid_h = modules[m_idx](pyramid_h)
m_idx += 1
pyramid = pyramid + pyramid_h
elif self.progressive == 'residual':
pyramid = modules[m_idx](pyramid)
m_idx += 1
if self.skip_rescale:
pyramid = (pyramid + h) / np.sqrt(2.)
else:
pyramid = pyramid + h
h = pyramid
else:
raise ValueError(f'{self.progressive} is not a valid name')
# Upsampling Layer
if i_level != 0:
if self.resblock_type == 'ddpm':
h = modules[m_idx](h)
m_idx += 1
else:
h = modules[m_idx](h, temb) # Upspampling
m_idx += 1
assert not hs
if self.progressive == 'output_skip':
h = pyramid
else:
h = self.act(modules[m_idx](h))
m_idx += 1
h = modules[m_idx](h)
m_idx += 1
assert m_idx == len(modules), "Implementation error"
# Convert back to complex number
h = self.output_layer(h)
if self.scale_by_sigma:
used_sigmas = used_sigmas.reshape((x.shape[0], *([1] * len(x.shape[1:]))))
h = h / used_sigmas
h = torch.permute(h, (0, 2, 3, 1)).contiguous()
h = torch.view_as_complex(h)[:,None, :, :]
return h
|