File size: 26,148 Bytes
05b4fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 |
from functools import partial
import numpy as np
import torch
from torch import nn, Tensor
from torch.nn.modules.batchnorm import _BatchNorm
from .shared import BackboneRegistry, ComplexConv2d, ComplexConvTranspose2d, ComplexLinear, \
DiffusionStepEmbedding, GaussianFourierProjection, FeatureMapDense, torch_complex_from_reim
def get_activation(name):
if name == "silu":
return nn.SiLU
elif name == "relu":
return nn.ReLU
elif name == "leaky_relu":
return nn.LeakyReLU
else:
raise NotImplementedError(f"Unknown activation: {name}")
class BatchNorm(_BatchNorm):
def _check_input_dim(self, input):
if input.dim() < 2 or input.dim() > 4:
raise ValueError("expected 4D or 3D input (got {}D input)".format(input.dim()))
class OnReIm(nn.Module):
def __init__(self, module_cls, *args, **kwargs):
super().__init__()
self.re_module = module_cls(*args, **kwargs)
self.im_module = module_cls(*args, **kwargs)
def forward(self, x):
return torch_complex_from_reim(self.re_module(x.real), self.im_module(x.imag))
# Code for DCUNet largely copied from Danilo's `informedenh` repo, cheers!
def unet_decoder_args(encoders, *, skip_connections):
"""Get list of decoder arguments for upsampling (right) side of a symmetric u-net,
given the arguments used to construct the encoder.
Args:
encoders (tuple of length `N` of tuples of (in_chan, out_chan, kernel_size, stride, padding)):
List of arguments used to construct the encoders
skip_connections (bool): Whether to include skip connections in the
calculation of decoder input channels.
Return:
tuple of length `N` of tuples of (in_chan, out_chan, kernel_size, stride, padding):
Arguments to be used to construct decoders
"""
decoder_args = []
for enc_in_chan, enc_out_chan, enc_kernel_size, enc_stride, enc_padding, enc_dilation in reversed(encoders):
if skip_connections and decoder_args:
skip_in_chan = enc_out_chan
else:
skip_in_chan = 0
decoder_args.append(
(enc_out_chan + skip_in_chan, enc_in_chan, enc_kernel_size, enc_stride, enc_padding, enc_dilation)
)
return tuple(decoder_args)
def make_unet_encoder_decoder_args(encoder_args, decoder_args):
encoder_args = tuple(
(
in_chan,
out_chan,
tuple(kernel_size),
tuple(stride),
tuple([n // 2 for n in kernel_size]) if padding == "auto" else tuple(padding),
tuple(dilation)
)
for in_chan, out_chan, kernel_size, stride, padding, dilation in encoder_args
)
if decoder_args == "auto":
decoder_args = unet_decoder_args(
encoder_args,
skip_connections=True,
)
else:
decoder_args = tuple(
(
in_chan,
out_chan,
tuple(kernel_size),
tuple(stride),
tuple([n // 2 for n in kernel_size]) if padding == "auto" else padding,
tuple(dilation),
output_padding,
)
for in_chan, out_chan, kernel_size, stride, padding, dilation, output_padding in decoder_args
)
return encoder_args, decoder_args
DCUNET_ARCHITECTURES = {
"DCUNet-10": make_unet_encoder_decoder_args(
# Encoders:
# (in_chan, out_chan, kernel_size, stride, padding, dilation)
(
(1, 32, (7, 5), (2, 2), "auto", (1,1)),
(32, 64, (7, 5), (2, 2), "auto", (1,1)),
(64, 64, (5, 3), (2, 2), "auto", (1,1)),
(64, 64, (5, 3), (2, 2), "auto", (1,1)),
(64, 64, (5, 3), (2, 1), "auto", (1,1)),
),
# Decoders: automatic inverse
"auto",
),
"DCUNet-16": make_unet_encoder_decoder_args(
# Encoders:
# (in_chan, out_chan, kernel_size, stride, padding, dilation)
(
(1, 32, (7, 5), (2, 2), "auto", (1,1)),
(32, 32, (7, 5), (2, 1), "auto", (1,1)),
(32, 64, (7, 5), (2, 2), "auto", (1,1)),
(64, 64, (5, 3), (2, 1), "auto", (1,1)),
(64, 64, (5, 3), (2, 2), "auto", (1,1)),
(64, 64, (5, 3), (2, 1), "auto", (1,1)),
(64, 64, (5, 3), (2, 2), "auto", (1,1)),
(64, 64, (5, 3), (2, 1), "auto", (1,1)),
),
# Decoders: automatic inverse
"auto",
),
"DCUNet-20": make_unet_encoder_decoder_args(
# Encoders:
# (in_chan, out_chan, kernel_size, stride, padding, dilation)
(
(1, 32, (7, 1), (1, 1), "auto", (1,1)),
(32, 32, (1, 7), (1, 1), "auto", (1,1)),
(32, 64, (7, 5), (2, 2), "auto", (1,1)),
(64, 64, (7, 5), (2, 1), "auto", (1,1)),
(64, 64, (5, 3), (2, 2), "auto", (1,1)),
(64, 64, (5, 3), (2, 1), "auto", (1,1)),
(64, 64, (5, 3), (2, 2), "auto", (1,1)),
(64, 64, (5, 3), (2, 1), "auto", (1,1)),
(64, 64, (5, 3), (2, 2), "auto", (1,1)),
(64, 90, (5, 3), (2, 1), "auto", (1,1)),
),
# Decoders: automatic inverse
"auto",
),
"DilDCUNet-v2": make_unet_encoder_decoder_args( # architecture used in SGMSE / Interspeech paper
# Encoders:
# (in_chan, out_chan, kernel_size, stride, padding, dilation)
(
(1, 32, (4, 4), (1, 1), "auto", (1, 1)),
(32, 32, (4, 4), (1, 1), "auto", (1, 1)),
(32, 32, (4, 4), (1, 1), "auto", (1, 1)),
(32, 64, (4, 4), (2, 1), "auto", (2, 1)),
(64, 128, (4, 4), (2, 2), "auto", (4, 1)),
(128, 256, (4, 4), (2, 2), "auto", (8, 1)),
),
# Decoders: automatic inverse
"auto",
),
}
@BackboneRegistry.register("dcunet")
class DCUNet(nn.Module):
@staticmethod
def add_argparse_args(parser):
parser.add_argument("--dcunet-architecture", type=str, default="DilDCUNet-v2", choices=DCUNET_ARCHITECTURES.keys(), help="The concrete DCUNet architecture. 'DilDCUNet-v2' by default.")
parser.add_argument("--dcunet-time-embedding", type=str, choices=("gfp", "ds", "none"), default="gfp", help="Timestep embedding style. 'gfp' (Gaussian Fourier Projections) by default.")
parser.add_argument("--dcunet-temb-layers-global", type=int, default=1, help="Number of global linear+activation layers for the time embedding. 1 by default.")
parser.add_argument("--dcunet-temb-layers-local", type=int, default=1, help="Number of local (per-encoder/per-decoder) linear+activation layers for the time embedding. 1 by default.")
parser.add_argument("--dcunet-temb-activation", type=str, default="silu", help="The (complex) activation to use between all (global&local) time embedding layers.")
parser.add_argument("--dcunet-time-embedding-complex", action="store_true", help="Use complex-valued timestep embedding. Compatible with 'gfp' and 'ds' embeddings.")
parser.add_argument("--dcunet-fix-length", type=str, default="pad", choices=("pad", "trim", "none"), help="DCUNet strategy to 'fix' mismatched input timespan. 'pad' by default.")
parser.add_argument("--dcunet-mask-bound", type=str, choices=("tanh", "sigmoid", "none"), default="none", help="DCUNet output bounding strategy. 'none' by default.")
parser.add_argument("--dcunet-norm-type", type=str, choices=("bN", "CbN"), default="bN", help="The type of norm to use within each encoder and decoder layer. 'bN' (real/imaginary separate batch norm) by default.")
parser.add_argument("--dcunet-activation", type=str, choices=("leaky_relu", "relu", "silu"), default="leaky_relu", help="The activation to use within each encoder and decoder layer. 'leaky_relu' by default.")
return parser
def __init__(
self,
dcunet_architecture: str = "DilDCUNet-v2",
dcunet_time_embedding: str = "gfp",
dcunet_temb_layers_global: int = 2,
dcunet_temb_layers_local: int = 1,
dcunet_temb_activation: str = "silu",
dcunet_time_embedding_complex: bool = False,
dcunet_fix_length: str = "pad",
dcunet_mask_bound: str = "none",
dcunet_norm_type: str = "bN",
dcunet_activation: str = "relu",
embed_dim: int = 128,
**kwargs
):
super().__init__()
self.architecture = dcunet_architecture
self.fix_length_mode = (dcunet_fix_length if dcunet_fix_length != "none" else None)
self.norm_type = dcunet_norm_type
self.activation = dcunet_activation
self.input_channels = 2 # for x_t and y -- note that this is 2 rather than 4, because we directly treat complex channels in this DNN
self.time_embedding = (dcunet_time_embedding if dcunet_time_embedding != "none" else None)
self.time_embedding_complex = dcunet_time_embedding_complex
self.temb_layers_global = dcunet_temb_layers_global
self.temb_layers_local = dcunet_temb_layers_local
self.temb_activation = dcunet_temb_activation
conf_encoders, conf_decoders = DCUNET_ARCHITECTURES[dcunet_architecture]
# Replace `input_channels` in encoders config
_replaced_input_channels, *rest = conf_encoders[0]
encoders = ((self.input_channels, *rest), *conf_encoders[1:])
decoders = conf_decoders
self.encoders_stride_product = np.prod(
[enc_stride for _, _, _, enc_stride, _, _ in encoders], axis=0
)
# Prepare kwargs for encoder and decoder (to potentially be modified before layer instantiation)
encoder_decoder_kwargs = dict(
norm_type=self.norm_type, activation=self.activation,
temb_layers=self.temb_layers_local, temb_activation=self.temb_activation)
# Instantiate (global) time embedding layer
embed_ops = []
if self.time_embedding is not None:
complex_valued = self.time_embedding_complex
if self.time_embedding == "gfp":
embed_ops += [GaussianFourierProjection(embed_dim=embed_dim, complex_valued=complex_valued)]
encoder_decoder_kwargs["embed_dim"] = embed_dim
elif self.time_embedding == "ds":
embed_ops += [DiffusionStepEmbedding(embed_dim=embed_dim, complex_valued=complex_valued)]
encoder_decoder_kwargs["embed_dim"] = embed_dim
if self.time_embedding_complex:
assert self.time_embedding in ("gfp", "ds"), "Complex timestep embedding only available for gfp and ds"
encoder_decoder_kwargs["complex_time_embedding"] = True
for _ in range(self.temb_layers_global):
embed_ops += [
ComplexLinear(embed_dim, embed_dim, complex_valued=True),
OnReIm(get_activation(dcunet_temb_activation))
]
self.embed = nn.Sequential(*embed_ops)
### Instantiate DCUNet layers ###
output_layer = ComplexConvTranspose2d(*decoders[-1])
encoders = [DCUNetComplexEncoderBlock(*args, **encoder_decoder_kwargs) for args in encoders]
decoders = [DCUNetComplexDecoderBlock(*args, **encoder_decoder_kwargs) for args in decoders[:-1]]
self.mask_bound = (dcunet_mask_bound if dcunet_mask_bound != "none" else None)
if self.mask_bound is not None:
raise NotImplementedError("sorry, mask bounding not implemented at the moment")
# TODO we can't use nn.Sequential since the ComplexConvTranspose2d needs a second `output_size` argument
#operations = (output_layer, complex_nn.BoundComplexMask(self.mask_bound))
#output_layer = nn.Sequential(*[x for x in operations if x is not None])
assert len(encoders) == len(decoders) + 1
self.encoders = nn.ModuleList(encoders)
self.decoders = nn.ModuleList(decoders)
self.output_layer = output_layer or nn.Identity()
def forward(self, spec, t) -> Tensor:
"""
Input shape is expected to be $(batch, nfreqs, time)$, with $nfreqs - 1$ divisible
by $f_0 * f_1 * ... * f_N$ where $f_k$ are the frequency strides of the encoders,
and $time - 1$ is divisible by $t_0 * t_1 * ... * t_N$ where $t_N$ are the time
strides of the encoders.
Args:
spec (Tensor): complex spectrogram tensor. 1D, 2D or 3D tensor, time last.
Returns:
Tensor, of shape (batch, time) or (time).
"""
# TF-rep shape: (batch, self.input_channels, n_fft, frames)
# Estimate mask from time-frequency representation.
x_in = self.fix_input_dims(spec)
x = x_in
t_embed = self.embed(t+0j) if self.time_embedding is not None else None
enc_outs = []
for idx, enc in enumerate(self.encoders):
x = enc(x, t_embed)
# UNet skip connection
enc_outs.append(x)
for (enc_out, dec) in zip(reversed(enc_outs[:-1]), self.decoders):
x = dec(x, t_embed, output_size=enc_out.shape)
x = torch.cat([x, enc_out], dim=1)
output = self.output_layer(x, output_size=x_in.shape)
# output shape: (batch, 1, n_fft, frames)
output = self.fix_output_dims(output, spec)
return output
def fix_input_dims(self, x):
return _fix_dcu_input_dims(
self.fix_length_mode, x, torch.from_numpy(self.encoders_stride_product)
)
def fix_output_dims(self, out, x):
return _fix_dcu_output_dims(self.fix_length_mode, out, x)
def _fix_dcu_input_dims(fix_length_mode, x, encoders_stride_product):
"""Pad or trim `x` to a length compatible with DCUNet."""
freq_prod = int(encoders_stride_product[0])
time_prod = int(encoders_stride_product[1])
if (x.shape[2] - 1) % freq_prod:
raise TypeError(
f"Input shape must be [batch, ch, freq + 1, time + 1] with freq divisible by "
f"{freq_prod}, got {x.shape} instead"
)
time_remainder = (x.shape[3] - 1) % time_prod
if time_remainder:
if fix_length_mode is None:
raise TypeError(
f"Input shape must be [batch, ch, freq + 1, time + 1] with time divisible by "
f"{time_prod}, got {x.shape} instead. Set the 'fix_length_mode' argument "
f"in 'DCUNet' to 'pad' or 'trim' to fix shapes automatically."
)
elif fix_length_mode == "pad":
pad_shape = [0, time_prod - time_remainder]
x = nn.functional.pad(x, pad_shape, mode="constant")
elif fix_length_mode == "trim":
pad_shape = [0, -time_remainder]
x = nn.functional.pad(x, pad_shape, mode="constant")
else:
raise ValueError(f"Unknown fix_length mode '{fix_length_mode}'")
return x
def _fix_dcu_output_dims(fix_length_mode, out, x):
"""Fix shape of `out` to the original shape of `x` by padding/cropping."""
inp_len = x.shape[-1]
output_len = out.shape[-1]
return nn.functional.pad(out, [0, inp_len - output_len])
def _get_norm(norm_type):
if norm_type == "CbN":
return ComplexBatchNorm
elif norm_type == "bN":
return partial(OnReIm, BatchNorm)
else:
raise NotImplementedError(f"Unknown norm type: {norm_type}")
class DCUNetComplexEncoderBlock(nn.Module):
def __init__(
self,
in_chan,
out_chan,
kernel_size,
stride,
padding,
dilation,
norm_type="bN",
activation="leaky_relu",
embed_dim=None,
complex_time_embedding=False,
temb_layers=1,
temb_activation="silu"
):
super().__init__()
self.in_chan = in_chan
self.out_chan = out_chan
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.temb_layers = temb_layers
self.temb_activation = temb_activation
self.complex_time_embedding = complex_time_embedding
self.conv = ComplexConv2d(
in_chan, out_chan, kernel_size, stride, padding, bias=norm_type is None, dilation=dilation
)
self.norm = _get_norm(norm_type)(out_chan)
self.activation = OnReIm(get_activation(activation))
self.embed_dim = embed_dim
if self.embed_dim is not None:
ops = []
for _ in range(max(0, self.temb_layers - 1)):
ops += [
ComplexLinear(self.embed_dim, self.embed_dim, complex_valued=True),
OnReIm(get_activation(self.temb_activation))
]
ops += [
FeatureMapDense(self.embed_dim, self.out_chan, complex_valued=True),
OnReIm(get_activation(self.temb_activation))
]
self.embed_layer = nn.Sequential(*ops)
def forward(self, x, t_embed):
y = self.conv(x)
if self.embed_dim is not None:
y = y + self.embed_layer(t_embed)
return self.activation(self.norm(y))
class DCUNetComplexDecoderBlock(nn.Module):
def __init__(
self,
in_chan,
out_chan,
kernel_size,
stride,
padding,
dilation,
output_padding=(0, 0),
norm_type="bN",
activation="leaky_relu",
embed_dim=None,
temb_layers=1,
temb_activation='swish',
complex_time_embedding=False,
):
super().__init__()
self.in_chan = in_chan
self.out_chan = out_chan
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.output_padding = output_padding
self.complex_time_embedding = complex_time_embedding
self.temb_layers = temb_layers
self.temb_activation = temb_activation
self.deconv = ComplexConvTranspose2d(
in_chan, out_chan, kernel_size, stride, padding, output_padding, dilation=dilation, bias=norm_type is None
)
self.norm = _get_norm(norm_type)(out_chan)
self.activation = OnReIm(get_activation(activation))
self.embed_dim = embed_dim
if self.embed_dim is not None:
ops = []
for _ in range(max(0, self.temb_layers - 1)):
ops += [
ComplexLinear(self.embed_dim, self.embed_dim, complex_valued=True),
OnReIm(get_activation(self.temb_activation))
]
ops += [
FeatureMapDense(self.embed_dim, self.out_chan, complex_valued=True),
OnReIm(get_activation(self.temb_activation))
]
self.embed_layer = nn.Sequential(*ops)
def forward(self, x, t_embed, output_size=None):
y = self.deconv(x, output_size=output_size)
if self.embed_dim is not None:
y = y + self.embed_layer(t_embed)
return self.activation(self.norm(y))
# From https://github.com/chanil1218/DCUnet.pytorch/blob/2dcdd30804be47a866fde6435cbb7e2f81585213/models/layers/complexnn.py
class ComplexBatchNorm(torch.nn.Module):
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=False):
super(ComplexBatchNorm, self).__init__()
self.num_features = num_features
self.eps = eps
self.momentum = momentum
self.affine = affine
self.track_running_stats = track_running_stats
if self.affine:
self.Wrr = torch.nn.Parameter(torch.Tensor(num_features))
self.Wri = torch.nn.Parameter(torch.Tensor(num_features))
self.Wii = torch.nn.Parameter(torch.Tensor(num_features))
self.Br = torch.nn.Parameter(torch.Tensor(num_features))
self.Bi = torch.nn.Parameter(torch.Tensor(num_features))
else:
self.register_parameter('Wrr', None)
self.register_parameter('Wri', None)
self.register_parameter('Wii', None)
self.register_parameter('Br', None)
self.register_parameter('Bi', None)
if self.track_running_stats:
self.register_buffer('RMr', torch.zeros(num_features))
self.register_buffer('RMi', torch.zeros(num_features))
self.register_buffer('RVrr', torch.ones (num_features))
self.register_buffer('RVri', torch.zeros(num_features))
self.register_buffer('RVii', torch.ones (num_features))
self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
else:
self.register_parameter('RMr', None)
self.register_parameter('RMi', None)
self.register_parameter('RVrr', None)
self.register_parameter('RVri', None)
self.register_parameter('RVii', None)
self.register_parameter('num_batches_tracked', None)
self.reset_parameters()
def reset_running_stats(self):
if self.track_running_stats:
self.RMr.zero_()
self.RMi.zero_()
self.RVrr.fill_(1)
self.RVri.zero_()
self.RVii.fill_(1)
self.num_batches_tracked.zero_()
def reset_parameters(self):
self.reset_running_stats()
if self.affine:
self.Br.data.zero_()
self.Bi.data.zero_()
self.Wrr.data.fill_(1)
self.Wri.data.uniform_(-.9, +.9) # W will be positive-definite
self.Wii.data.fill_(1)
def _check_input_dim(self, xr, xi):
assert(xr.shape == xi.shape)
assert(xr.size(1) == self.num_features)
def forward(self, x):
xr, xi = x.real, x.imag
self._check_input_dim(xr, xi)
exponential_average_factor = 0.0
if self.training and self.track_running_stats:
self.num_batches_tracked += 1
if self.momentum is None: # use cumulative moving average
exponential_average_factor = 1.0 / self.num_batches_tracked.item()
else: # use exponential moving average
exponential_average_factor = self.momentum
#
# NOTE: The precise meaning of the "training flag" is:
# True: Normalize using batch statistics, update running statistics
# if they are being collected.
# False: Normalize using running statistics, ignore batch statistics.
#
training = self.training or not self.track_running_stats
redux = [i for i in reversed(range(xr.dim())) if i!=1]
vdim = [1] * xr.dim()
vdim[1] = xr.size(1)
#
# Mean M Computation and Centering
#
# Includes running mean update if training and running.
#
if training:
Mr, Mi = xr, xi
for d in redux:
Mr = Mr.mean(d, keepdim=True)
Mi = Mi.mean(d, keepdim=True)
if self.track_running_stats:
self.RMr.lerp_(Mr.squeeze(), exponential_average_factor)
self.RMi.lerp_(Mi.squeeze(), exponential_average_factor)
else:
Mr = self.RMr.view(vdim)
Mi = self.RMi.view(vdim)
xr, xi = xr-Mr, xi-Mi
#
# Variance Matrix V Computation
#
# Includes epsilon numerical stabilizer/Tikhonov regularizer.
# Includes running variance update if training and running.
#
if training:
Vrr = xr * xr
Vri = xr * xi
Vii = xi * xi
for d in redux:
Vrr = Vrr.mean(d, keepdim=True)
Vri = Vri.mean(d, keepdim=True)
Vii = Vii.mean(d, keepdim=True)
if self.track_running_stats:
self.RVrr.lerp_(Vrr.squeeze(), exponential_average_factor)
self.RVri.lerp_(Vri.squeeze(), exponential_average_factor)
self.RVii.lerp_(Vii.squeeze(), exponential_average_factor)
else:
Vrr = self.RVrr.view(vdim)
Vri = self.RVri.view(vdim)
Vii = self.RVii.view(vdim)
Vrr = Vrr + self.eps
Vri = Vri
Vii = Vii + self.eps
#
# Matrix Inverse Square Root U = V^-0.5
#
# sqrt of a 2x2 matrix,
# - https://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix
tau = Vrr + Vii
delta = torch.addcmul(Vrr * Vii, Vri, Vri, value=-1)
s = delta.sqrt()
t = (tau + 2*s).sqrt()
# matrix inverse, http://mathworld.wolfram.com/MatrixInverse.html
rst = (s * t).reciprocal()
Urr = (s + Vii) * rst
Uii = (s + Vrr) * rst
Uri = ( - Vri) * rst
#
# Optionally left-multiply U by affine weights W to produce combined
# weights Z, left-multiply the inputs by Z, then optionally bias them.
#
# y = Zx + B
# y = WUx + B
# y = [Wrr Wri][Urr Uri] [xr] + [Br]
# [Wir Wii][Uir Uii] [xi] [Bi]
#
if self.affine:
Wrr, Wri, Wii = self.Wrr.view(vdim), self.Wri.view(vdim), self.Wii.view(vdim)
Zrr = (Wrr * Urr) + (Wri * Uri)
Zri = (Wrr * Uri) + (Wri * Uii)
Zir = (Wri * Urr) + (Wii * Uri)
Zii = (Wri * Uri) + (Wii * Uii)
else:
Zrr, Zri, Zir, Zii = Urr, Uri, Uri, Uii
yr = (Zrr * xr) + (Zri * xi)
yi = (Zir * xr) + (Zii * xi)
if self.affine:
yr = yr + self.Br.view(vdim)
yi = yi + self.Bi.view(vdim)
return torch.view_as_complex(torch.stack([yr, yi], dim=-1))
def extra_repr(self):
return '{num_features}, eps={eps}, momentum={momentum}, affine={affine}, ' \
'track_running_stats={track_running_stats}'.format(**self.__dict__)
|