File size: 11,216 Bytes
05b4fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
"""
Abstract SDE classes, Reverse SDE, and VE/VP SDEs.

Taken and adapted from https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sde_lib.py
"""
import abc
import warnings

import numpy as np
from sgmse.util.tensors import batch_broadcast
import torch

from sgmse.util.registry import Registry


SDERegistry = Registry("SDE")


class SDE(abc.ABC):
    """SDE abstract class. Functions are designed for a mini-batch of inputs."""

    def __init__(self, N):
        """Construct an SDE.

        Args:
            N: number of discretization time steps.
        """
        super().__init__()
        self.N = N

    @property
    @abc.abstractmethod
    def T(self):
        """End time of the SDE."""
        pass

    @abc.abstractmethod
    def sde(self, x, t, *args):
        pass

    @abc.abstractmethod
    def marginal_prob(self, x, t, *args):
        """Parameters to determine the marginal distribution of the SDE, $p_t(x|args)$."""
        pass

    @abc.abstractmethod
    def prior_sampling(self, shape, *args):
        """Generate one sample from the prior distribution, $p_T(x|args)$ with shape `shape`."""
        pass

    @abc.abstractmethod
    def prior_logp(self, z):
        """Compute log-density of the prior distribution.

        Useful for computing the log-likelihood via probability flow ODE.

        Args:
            z: latent code
        Returns:
            log probability density
        """
        pass

    @staticmethod
    @abc.abstractmethod
    def add_argparse_args(parent_parser):
        """
        Add the necessary arguments for instantiation of this SDE class to an argparse ArgumentParser.
        """
        pass

    def discretize(self, x, t, y, stepsize):
        """Discretize the SDE in the form: x_{i+1} = x_i + f_i(x_i) + G_i z_i.

        Useful for reverse diffusion sampling and probabiliy flow sampling.
        Defaults to Euler-Maruyama discretization.

        Args:
            x: a torch tensor
            t: a torch float representing the time step (from 0 to `self.T`)

        Returns:
            f, G
        """
        dt = stepsize
        drift, diffusion = self.sde(x, t, y)
        f = drift * dt
        G = diffusion * torch.sqrt(dt)
        return f, G

    def reverse(oself, score_model, probability_flow=False):
        """Create the reverse-time SDE/ODE.

        Args:
            score_model: A function that takes x, t and y and returns the score.
            probability_flow: If `True`, create the reverse-time ODE used for probability flow sampling.
        """
        N = oself.N
        T = oself.T
        sde_fn = oself.sde
        discretize_fn = oself.discretize

        # Build the class for reverse-time SDE.
        class RSDE(oself.__class__):
            def __init__(self):
                self.N = N
                self.probability_flow = probability_flow

            @property
            def T(self):
                return T

            def sde(self, x, t, *args):
                """Create the drift and diffusion functions for the reverse SDE/ODE."""
                rsde_parts = self.rsde_parts(x, t, *args)
                total_drift, diffusion = rsde_parts["total_drift"], rsde_parts["diffusion"]
                return total_drift, diffusion

            def rsde_parts(self, x, t, *args):
                sde_drift, sde_diffusion = sde_fn(x, t, *args)
                score = score_model(x, t, *args)
                score_drift = -sde_diffusion[:, None, None, None]**2 * score * (0.5 if self.probability_flow else 1.)
                diffusion = torch.zeros_like(sde_diffusion) if self.probability_flow else sde_diffusion
                total_drift = sde_drift + score_drift
                return {
                    'total_drift': total_drift, 'diffusion': diffusion, 'sde_drift': sde_drift,
                    'sde_diffusion': sde_diffusion, 'score_drift': score_drift, 'score': score,
                }

            def discretize(self, x, t, y, stepsize):
                """Create discretized iteration rules for the reverse diffusion sampler."""
                f, G = discretize_fn(x, t, y, stepsize)
                rev_f = f - G[:, None, None, None] ** 2 * score_model(x, t, y) * (0.5 if self.probability_flow else 1.)
                rev_G = torch.zeros_like(G) if self.probability_flow else G
                return rev_f, rev_G

        return RSDE()

    @abc.abstractmethod
    def copy(self):
        pass


@SDERegistry.register("ouve")
class OUVESDE(SDE):
    @staticmethod
    def add_argparse_args(parser):
        parser.add_argument("--sde-n", type=int, default=1000, help="The number of timesteps in the SDE discretization. 30 by default")
        parser.add_argument("--theta", type=float, default=1.5, help="The constant stiffness of the Ornstein-Uhlenbeck process. 1.5 by default.")
        parser.add_argument("--sigma-min", type=float, default=0.05, help="The minimum sigma to use. 0.05 by default.")
        parser.add_argument("--sigma-max", type=float, default=0.5, help="The maximum sigma to use. 0.5 by default.")
        return parser

    def __init__(self, theta, sigma_min, sigma_max, N=1000, **ignored_kwargs):
        """Construct an Ornstein-Uhlenbeck Variance Exploding SDE.

        Note that the "steady-state mean" `y` is not provided at construction, but must rather be given as an argument
        to the methods which require it (e.g., `sde` or `marginal_prob`).

        dx = -theta (y-x) dt + sigma(t) dw

        with

        sigma(t) = sigma_min (sigma_max/sigma_min)^t * sqrt(2 log(sigma_max/sigma_min))

        Args:
            theta: stiffness parameter.
            sigma_min: smallest sigma.
            sigma_max: largest sigma.
            N: number of discretization steps
        """
        super().__init__(N)
        self.theta = theta
        self.sigma_min = sigma_min
        self.sigma_max = sigma_max
        self.logsig = np.log(self.sigma_max / self.sigma_min)
        self.N = N

    def copy(self):
        return OUVESDE(self.theta, self.sigma_min, self.sigma_max, N=self.N)

    @property
    def T(self):
        return 1

    def sde(self, x, t, y):
        drift = self.theta * (y - x)
        # the sqrt(2*logsig) factor is required here so that logsig does not in the end affect the perturbation kernel
        # standard deviation. this can be understood from solving the integral of [exp(2s) * g(s)^2] from s=0 to t
        # with g(t) = sigma(t) as defined here, and seeing that `logsig` remains in the integral solution
        # unless this sqrt(2*logsig) factor is included.
        sigma = self.sigma_min * (self.sigma_max / self.sigma_min) ** t
        diffusion = sigma * np.sqrt(2 * self.logsig)
        return drift, diffusion

    def _mean(self, x0, t, y):
        theta = self.theta
        exp_interp = torch.exp(-theta * t)[:, None, None, None]
        return exp_interp * x0 + (1 - exp_interp) * y

    def alpha(self, t):
        return torch.exp(-self.theta * t)

    def _std(self, t):
        # This is a full solution to the ODE for P(t) in our derivations, after choosing g(s) as in self.sde()
        sigma_min, theta, logsig = self.sigma_min, self.theta, self.logsig
        # could maybe replace the two torch.exp(... * t) terms here by cached values **t
        return torch.sqrt(
            (
                sigma_min**2
                * torch.exp(-2 * theta * t)
                * (torch.exp(2 * (theta + logsig) * t) - 1)
                * logsig
            )
            /
            (theta + logsig)
        )

    def marginal_prob(self, x0, t, y):
        return self._mean(x0, t, y), self._std(t)

    def prior_sampling(self, shape, y):
        if shape != y.shape:
            warnings.warn(f"Target shape {shape} does not match shape of y {y.shape}! Ignoring target shape.")
        std = self._std(torch.ones((y.shape[0],), device=y.device))
        x_T = y + torch.randn_like(y) * std[:, None, None, None]
        return x_T

    def prior_logp(self, z):
        raise NotImplementedError("prior_logp for OU SDE not yet implemented!")


@SDERegistry.register("ouvp")
class OUVPSDE(SDE):
    # !!! We do not utilize this SDE in our works due to observed instabilities around t=0.2. !!!
    @staticmethod
    def add_argparse_args(parser):
        parser.add_argument("--sde-n", type=int, default=1000,
            help="The number of timesteps in the SDE discretization. 1000 by default")
        parser.add_argument("--beta-min", type=float, required=True,
            help="The minimum beta to use.")
        parser.add_argument("--beta-max", type=float, required=True,
            help="The maximum beta to use.")
        parser.add_argument("--stiffness", type=float, default=1,
            help="The stiffness factor for the drift, to be multiplied by 0.5*beta(t). 1 by default.")
        return parser

    def __init__(self, beta_min, beta_max, stiffness=1, N=1000, **ignored_kwargs):
        """
        !!! We do not utilize this SDE in our works due to observed instabilities around t=0.2. !!!

        Construct an Ornstein-Uhlenbeck Variance Preserving SDE:

        dx = -1/2 * beta(t) * stiffness * (y-x) dt + sqrt(beta(t)) * dw

        with

        beta(t) = beta_min + t(beta_max - beta_min)

        Note that the "steady-state mean" `y` is not provided at construction, but must rather be given as an argument
        to the methods which require it (e.g., `sde` or `marginal_prob`).

        Args:
            beta_min: smallest sigma.
            beta_max: largest sigma.
            stiffness: stiffness factor of the drift. 1 by default.
            N: number of discretization steps
        """
        super().__init__(N)
        self.beta_min = beta_min
        self.beta_max = beta_max
        self.stiffness = stiffness
        self.N = N

    def copy(self):
        return OUVPSDE(self.beta_min, self.beta_max, self.stiffness, N=self.N)

    @property
    def T(self):
        return 1

    def _beta(self, t):
        return self.beta_min + t * (self.beta_max - self.beta_min)

    def sde(self, x, t, y):
        drift = 0.5 * self.stiffness * batch_broadcast(self._beta(t), y) * (y - x)
        diffusion = torch.sqrt(self._beta(t))
        return drift, diffusion

    def _mean(self, x0, t, y):
        b0, b1, s = self.beta_min, self.beta_max, self.stiffness
        x0y_fac = torch.exp(-0.25 * s * t * (t * (b1-b0) + 2 * b0))[:, None, None, None]
        return y + x0y_fac * (x0 - y)

    def _std(self, t):
        b0, b1, s = self.beta_min, self.beta_max, self.stiffness
        return (1 - torch.exp(-0.5 * s * t * (t * (b1-b0) + 2 * b0))) / s

    def marginal_prob(self, x0, t, y):
        return self._mean(x0, t, y), self._std(t)

    def prior_sampling(self, shape, y):
        if shape != y.shape:
            warnings.warn(f"Target shape {shape} does not match shape of y {y.shape}! Ignoring target shape.")
        std = self._std(torch.ones((y.shape[0],), device=y.device))
        x_T = y + torch.randn_like(y) * std[:, None, None, None]
        return x_T

    def prior_logp(self, z):
        raise NotImplementedError("prior_logp for OU SDE not yet implemented!")