|
import abc |
|
|
|
import torch |
|
import numpy as np |
|
|
|
from sgmse.util.registry import Registry |
|
|
|
|
|
PredictorRegistry = Registry("Predictor") |
|
|
|
|
|
class Predictor(abc.ABC): |
|
"""The abstract class for a predictor algorithm.""" |
|
|
|
def __init__(self, sde, score_fn, probability_flow=False): |
|
super().__init__() |
|
self.sde = sde |
|
self.rsde = sde.reverse(score_fn) |
|
self.score_fn = score_fn |
|
self.probability_flow = probability_flow |
|
|
|
@abc.abstractmethod |
|
def update_fn(self, x, t, *args): |
|
"""One update of the predictor. |
|
|
|
Args: |
|
x: A PyTorch tensor representing the current state |
|
t: A Pytorch tensor representing the current time step. |
|
*args: Possibly additional arguments, in particular `y` for OU processes |
|
|
|
Returns: |
|
x: A PyTorch tensor of the next state. |
|
x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising. |
|
""" |
|
pass |
|
|
|
def debug_update_fn(self, x, t, *args): |
|
raise NotImplementedError(f"Debug update function not implemented for predictor {self}.") |
|
|
|
|
|
@PredictorRegistry.register('euler_maruyama') |
|
class EulerMaruyamaPredictor(Predictor): |
|
def __init__(self, sde, score_fn, probability_flow=False): |
|
super().__init__(sde, score_fn, probability_flow=probability_flow) |
|
|
|
def update_fn(self, x, t, *args): |
|
dt = -1. / self.rsde.N |
|
z = torch.randn_like(x) |
|
f, g = self.rsde.sde(x, t, *args) |
|
x_mean = x + f * dt |
|
x = x_mean + g[:, None, None, None] * np.sqrt(-dt) * z |
|
return x, x_mean |
|
|
|
|
|
@PredictorRegistry.register('reverse_diffusion') |
|
class ReverseDiffusionPredictor(Predictor): |
|
def __init__(self, sde, score_fn, probability_flow=False): |
|
super().__init__(sde, score_fn, probability_flow=probability_flow) |
|
|
|
def update_fn(self, x, t, y, stepsize): |
|
f, g = self.rsde.discretize(x, t, y, stepsize) |
|
z = torch.randn_like(x) |
|
x_mean = x - f |
|
x = x_mean + g[:, None, None, None] * z |
|
return x, x_mean |
|
|
|
|
|
@PredictorRegistry.register('none') |
|
class NonePredictor(Predictor): |
|
"""An empty predictor that does nothing.""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
pass |
|
|
|
def update_fn(self, x, t, *args): |
|
return x, x |
|
|