|
import abc |
|
import torch |
|
|
|
from sgmse import sdes |
|
from sgmse.util.registry import Registry |
|
|
|
|
|
CorrectorRegistry = Registry("Corrector") |
|
|
|
|
|
class Corrector(abc.ABC): |
|
"""The abstract class for a corrector algorithm.""" |
|
|
|
def __init__(self, sde, score_fn, snr, n_steps): |
|
super().__init__() |
|
self.rsde = sde.reverse(score_fn) |
|
self.score_fn = score_fn |
|
self.snr = snr |
|
self.n_steps = n_steps |
|
|
|
@abc.abstractmethod |
|
def update_fn(self, x, t, *args): |
|
"""One update of the corrector. |
|
|
|
Args: |
|
x: A PyTorch tensor representing the current state |
|
t: A PyTorch tensor representing the current time step. |
|
*args: Possibly additional arguments, in particular `y` for OU processes |
|
|
|
Returns: |
|
x: A PyTorch tensor of the next state. |
|
x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising. |
|
""" |
|
pass |
|
|
|
|
|
@CorrectorRegistry.register(name='langevin') |
|
class LangevinCorrector(Corrector): |
|
def __init__(self, sde, score_fn, snr, n_steps): |
|
super().__init__(sde, score_fn, snr, n_steps) |
|
self.score_fn = score_fn |
|
self.n_steps = n_steps |
|
self.snr = snr |
|
|
|
def update_fn(self, x, t, *args): |
|
target_snr = self.snr |
|
for _ in range(self.n_steps): |
|
grad = self.score_fn(x, t, *args) |
|
noise = torch.randn_like(x) |
|
grad_norm = torch.norm(grad.reshape(grad.shape[0], -1), dim=-1).mean() |
|
noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() |
|
step_size = ((target_snr * noise_norm / grad_norm) ** 2 * 2).unsqueeze(0) |
|
x_mean = x + step_size[:, None, None, None] * grad |
|
x = x_mean + noise * torch.sqrt(step_size * 2)[:, None, None, None] |
|
|
|
return x, x_mean |
|
|
|
|
|
@CorrectorRegistry.register(name='ald') |
|
class AnnealedLangevinDynamics(Corrector): |
|
"""The original annealed Langevin dynamics predictor in NCSN/NCSNv2.""" |
|
def __init__(self, sde, score_fn, snr, n_steps): |
|
super().__init__(sde, score_fn, snr, n_steps) |
|
if not isinstance(sde, (sdes.OUVESDE,)): |
|
raise NotImplementedError(f"SDE class {sde.__class__.__name__} not yet supported.") |
|
self.sde = sde |
|
self.score_fn = score_fn |
|
self.snr = snr |
|
self.n_steps = n_steps |
|
|
|
def update_fn(self, x, t, *args): |
|
n_steps = self.n_steps |
|
target_snr = self.snr |
|
std = self.sde.marginal_prob(x, t, *args)[1] |
|
|
|
for _ in range(n_steps): |
|
grad = self.score_fn(x, t, *args) |
|
noise = torch.randn_like(x) |
|
step_size = (target_snr * std) ** 2 * 2 |
|
x_mean = x + step_size[:, None, None, None] * grad |
|
x = x_mean + noise * torch.sqrt(step_size * 2)[:, None, None, None] |
|
|
|
return x, x_mean |
|
|
|
|
|
@CorrectorRegistry.register(name='none') |
|
class NoneCorrector(Corrector): |
|
"""An empty corrector that does nothing.""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
self.snr = 0 |
|
self.n_steps = 0 |
|
pass |
|
|
|
def update_fn(self, x, t, *args): |
|
return x, x |
|
|