|
import functools |
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from sgmse.util.registry import Registry |
|
|
|
|
|
BackboneRegistry = Registry("Backbone") |
|
|
|
|
|
class GaussianFourierProjection(nn.Module): |
|
"""Gaussian random features for encoding time steps.""" |
|
|
|
def __init__(self, embed_dim, scale=16, complex_valued=False): |
|
super().__init__() |
|
self.complex_valued = complex_valued |
|
if not complex_valued: |
|
|
|
|
|
|
|
|
|
embed_dim = embed_dim // 2 |
|
|
|
|
|
self.W = nn.Parameter(torch.randn(embed_dim) * scale, requires_grad=False) |
|
|
|
def forward(self, t): |
|
t_proj = t[:, None] * self.W[None, :] * 2*np.pi |
|
if self.complex_valued: |
|
return torch.exp(1j * t_proj) |
|
else: |
|
return torch.cat([torch.sin(t_proj), torch.cos(t_proj)], dim=-1) |
|
|
|
|
|
class DiffusionStepEmbedding(nn.Module): |
|
"""Diffusion-Step embedding as in DiffWave / Vaswani et al. 2017.""" |
|
|
|
def __init__(self, embed_dim, complex_valued=False): |
|
super().__init__() |
|
self.complex_valued = complex_valued |
|
if not complex_valued: |
|
|
|
|
|
|
|
|
|
embed_dim = embed_dim // 2 |
|
self.embed_dim = embed_dim |
|
|
|
def forward(self, t): |
|
fac = 10**(4*torch.arange(self.embed_dim, device=t.device) / (self.embed_dim-1)) |
|
inner = t[:, None] * fac[None, :] |
|
if self.complex_valued: |
|
return torch.exp(1j * inner) |
|
else: |
|
return torch.cat([torch.sin(inner), torch.cos(inner)], dim=-1) |
|
|
|
|
|
class ComplexLinear(nn.Module): |
|
"""A potentially complex-valued linear layer. Reduces to a regular linear layer if `complex_valued=False`.""" |
|
def __init__(self, input_dim, output_dim, complex_valued): |
|
super().__init__() |
|
self.complex_valued = complex_valued |
|
if self.complex_valued: |
|
self.re = nn.Linear(input_dim, output_dim) |
|
self.im = nn.Linear(input_dim, output_dim) |
|
else: |
|
self.lin = nn.Linear(input_dim, output_dim) |
|
|
|
def forward(self, x): |
|
if self.complex_valued: |
|
return (self.re(x.real) - self.im(x.imag)) + 1j*(self.re(x.imag) + self.im(x.real)) |
|
else: |
|
return self.lin(x) |
|
|
|
|
|
class FeatureMapDense(nn.Module): |
|
"""A fully connected layer that reshapes outputs to feature maps.""" |
|
|
|
def __init__(self, input_dim, output_dim, complex_valued=False): |
|
super().__init__() |
|
self.complex_valued = complex_valued |
|
self.dense = ComplexLinear(input_dim, output_dim, complex_valued=complex_valued) |
|
|
|
def forward(self, x): |
|
return self.dense(x)[..., None, None] |
|
|
|
|
|
def torch_complex_from_reim(re, im): |
|
return torch.view_as_complex(torch.stack([re, im], dim=-1)) |
|
|
|
|
|
class ArgsComplexMultiplicationWrapper(nn.Module): |
|
"""Adapted from `asteroid`'s `complex_nn.py`, allowing args/kwargs to be passed through forward(). |
|
|
|
Make a complex-valued module `F` from a real-valued module `f` by applying |
|
complex multiplication rules: |
|
|
|
F(a + i b) = f1(a) - f1(b) + i (f2(b) + f2(a)) |
|
|
|
where `f1`, `f2` are instances of `f` that do *not* share weights. |
|
|
|
Args: |
|
module_cls (callable): A class or function that returns a Torch module/functional. |
|
Constructor of `f` in the formula above. Called 2x with `*args`, `**kwargs`, |
|
to construct the real and imaginary component modules. |
|
""" |
|
|
|
def __init__(self, module_cls, *args, **kwargs): |
|
super().__init__() |
|
self.re_module = module_cls(*args, **kwargs) |
|
self.im_module = module_cls(*args, **kwargs) |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return torch_complex_from_reim( |
|
self.re_module(x.real, *args, **kwargs) - self.im_module(x.imag, *args, **kwargs), |
|
self.re_module(x.imag, *args, **kwargs) + self.im_module(x.real, *args, **kwargs), |
|
) |
|
|
|
|
|
ComplexConv2d = functools.partial(ArgsComplexMultiplicationWrapper, nn.Conv2d) |
|
ComplexConvTranspose2d = functools.partial(ArgsComplexMultiplicationWrapper, nn.ConvTranspose2d) |
|
|