|
|
|
from os.path import join |
|
import torch |
|
import pytorch_lightning as pl |
|
from torch.utils.data import Dataset |
|
from torch.utils.data import DataLoader |
|
from glob import glob |
|
from torchaudio import load |
|
import numpy as np |
|
import torch.nn.functional as F |
|
|
|
|
|
def get_window(window_type, window_length): |
|
if window_type == 'sqrthann': |
|
return torch.sqrt(torch.hann_window(window_length, periodic=True)) |
|
elif window_type == 'hann': |
|
return torch.hann_window(window_length, periodic=True) |
|
else: |
|
raise NotImplementedError(f"Window type {window_type} not implemented!") |
|
|
|
|
|
class Specs(Dataset): |
|
def __init__(self, data_dir, subset, dummy, shuffle_spec, num_frames, |
|
format='default', normalize="noisy", spec_transform=None, |
|
stft_kwargs=None, **ignored_kwargs): |
|
|
|
|
|
if format == "default": |
|
self.clean_files = [] |
|
self.clean_files += sorted(glob(join(data_dir, subset, "clean", "*.wav"))) |
|
self.clean_files += sorted(glob(join(data_dir, subset, "clean", "**", "*.wav"))) |
|
self.noisy_files = [] |
|
self.noisy_files += sorted(glob(join(data_dir, subset, "noisy", "*.wav"))) |
|
self.noisy_files += sorted(glob(join(data_dir, subset, "noisy", "**", "*.wav"))) |
|
elif format == "reverb": |
|
self.clean_files = [] |
|
self.clean_files += sorted(glob(join(data_dir, subset, "anechoic", "*.wav"))) |
|
self.clean_files += sorted(glob(join(data_dir, subset, "anechoic", "**", "*.wav"))) |
|
self.noisy_files = [] |
|
self.noisy_files += sorted(glob(join(data_dir, subset, "reverb", "*.wav"))) |
|
self.noisy_files += sorted(glob(join(data_dir, subset, "reverb", "**", "*.wav"))) |
|
else: |
|
|
|
raise NotImplementedError(f"Directory format {format} unknown!") |
|
|
|
self.dummy = dummy |
|
self.num_frames = num_frames |
|
self.shuffle_spec = shuffle_spec |
|
self.normalize = normalize |
|
self.spec_transform = spec_transform |
|
|
|
assert all(k in stft_kwargs.keys() for k in ["n_fft", "hop_length", "center", "window"]), "misconfigured STFT kwargs" |
|
self.stft_kwargs = stft_kwargs |
|
self.hop_length = self.stft_kwargs["hop_length"] |
|
assert self.stft_kwargs.get("center", None) == True, "'center' must be True for current implementation" |
|
|
|
def __getitem__(self, i): |
|
x, _ = load(self.clean_files[i]) |
|
y, _ = load(self.noisy_files[i]) |
|
|
|
|
|
target_len = (self.num_frames - 1) * self.hop_length |
|
current_len = x.size(-1) |
|
pad = max(target_len - current_len, 0) |
|
if pad == 0: |
|
|
|
if self.shuffle_spec: |
|
start = int(np.random.uniform(0, current_len-target_len)) |
|
else: |
|
start = int((current_len-target_len)/2) |
|
x = x[..., start:start+target_len] |
|
y = y[..., start:start+target_len] |
|
else: |
|
|
|
x = F.pad(x, (pad//2, pad//2+(pad%2)), mode='constant') |
|
y = F.pad(y, (pad//2, pad//2+(pad%2)), mode='constant') |
|
|
|
|
|
|
|
if self.normalize == "noisy": |
|
normfac = y.abs().max() |
|
elif self.normalize == "clean": |
|
normfac = x.abs().max() |
|
elif self.normalize == "not": |
|
normfac = 1.0 |
|
x = x / normfac |
|
y = y / normfac |
|
|
|
X = torch.stft(x, **self.stft_kwargs) |
|
Y = torch.stft(y, **self.stft_kwargs) |
|
|
|
X, Y = self.spec_transform(X), self.spec_transform(Y) |
|
return X, Y |
|
|
|
def __len__(self): |
|
if self.dummy: |
|
|
|
return int(len(self.clean_files)/200) |
|
else: |
|
return len(self.clean_files) |
|
|
|
|
|
class SpecsDataModule(pl.LightningDataModule): |
|
@staticmethod |
|
def add_argparse_args(parser): |
|
parser.add_argument("--base_dir", type=str, required=True, help="The base directory of the dataset. Should contain `train`, `valid` and `test` subdirectories, each of which contain `clean` and `noisy` subdirectories.") |
|
parser.add_argument("--format", type=str, choices=("default", "reverb"), default="default", help="Read file paths according to file naming format.") |
|
parser.add_argument("--batch_size", type=int, default=8, help="The batch size. 8 by default.") |
|
parser.add_argument("--n_fft", type=int, default=510, help="Number of FFT bins. 510 by default.") |
|
parser.add_argument("--hop_length", type=int, default=128, help="Window hop length. 128 by default.") |
|
parser.add_argument("--num_frames", type=int, default=256, help="Number of frames for the dataset. 256 by default.") |
|
parser.add_argument("--window", type=str, choices=("sqrthann", "hann"), default="hann", help="The window function to use for the STFT. 'hann' by default.") |
|
parser.add_argument("--num_workers", type=int, default=4, help="Number of workers to use for DataLoaders. 4 by default.") |
|
parser.add_argument("--dummy", action="store_true", help="Use reduced dummy dataset for prototyping.") |
|
parser.add_argument("--spec_factor", type=float, default=0.15, help="Factor to multiply complex STFT coefficients by. 0.15 by default.") |
|
parser.add_argument("--spec_abs_exponent", type=float, default=0.5, help="Exponent e for the transformation abs(z)**e * exp(1j*angle(z)). 0.5 by default.") |
|
parser.add_argument("--normalize", type=str, choices=("clean", "noisy", "not"), default="noisy", help="Normalize the input waveforms by the clean signal, the noisy signal, or not at all.") |
|
parser.add_argument("--transform_type", type=str, choices=("exponent", "log", "none"), default="exponent", help="Spectogram transformation for input representation.") |
|
return parser |
|
|
|
def __init__( |
|
self, base_dir, format='default', batch_size=8, |
|
n_fft=510, hop_length=128, num_frames=256, window='hann', |
|
num_workers=4, dummy=False, spec_factor=0.15, spec_abs_exponent=0.5, |
|
gpu=True, normalize='noisy', transform_type="exponent", **kwargs |
|
): |
|
super().__init__() |
|
self.base_dir = base_dir |
|
self.format = format |
|
self.batch_size = batch_size |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.num_frames = num_frames |
|
self.window = get_window(window, self.n_fft) |
|
self.windows = {} |
|
self.num_workers = num_workers |
|
self.dummy = dummy |
|
self.spec_factor = spec_factor |
|
self.spec_abs_exponent = spec_abs_exponent |
|
self.gpu = gpu |
|
self.normalize = normalize |
|
self.transform_type = transform_type |
|
self.kwargs = kwargs |
|
|
|
def setup(self, stage=None): |
|
specs_kwargs = dict( |
|
stft_kwargs=self.stft_kwargs, num_frames=self.num_frames, |
|
spec_transform=self.spec_fwd, **self.kwargs |
|
) |
|
if stage == 'fit' or stage is None: |
|
self.train_set = Specs(data_dir=self.base_dir, subset='train', |
|
dummy=self.dummy, shuffle_spec=True, format=self.format, |
|
normalize=self.normalize, **specs_kwargs) |
|
self.valid_set = Specs(data_dir=self.base_dir, subset='valid', |
|
dummy=self.dummy, shuffle_spec=False, format=self.format, |
|
normalize=self.normalize, **specs_kwargs) |
|
if stage == 'test' or stage is None: |
|
self.test_set = Specs(data_dir=self.base_dir, subset='test', |
|
dummy=self.dummy, shuffle_spec=False, format=self.format, |
|
normalize=self.normalize, **specs_kwargs) |
|
|
|
def spec_fwd(self, spec): |
|
if self.transform_type == "exponent": |
|
if self.spec_abs_exponent != 1: |
|
|
|
|
|
e = self.spec_abs_exponent |
|
spec = spec.abs()**e * torch.exp(1j * spec.angle()) |
|
spec = spec * self.spec_factor |
|
elif self.transform_type == "log": |
|
spec = torch.log(1 + spec.abs()) * torch.exp(1j * spec.angle()) |
|
spec = spec * self.spec_factor |
|
elif self.transform_type == "none": |
|
spec = spec |
|
return spec |
|
|
|
def spec_back(self, spec): |
|
if self.transform_type == "exponent": |
|
spec = spec / self.spec_factor |
|
if self.spec_abs_exponent != 1: |
|
e = self.spec_abs_exponent |
|
spec = spec.abs()**(1/e) * torch.exp(1j * spec.angle()) |
|
elif self.transform_type == "log": |
|
spec = spec / self.spec_factor |
|
spec = (torch.exp(spec.abs()) - 1) * torch.exp(1j * spec.angle()) |
|
elif self.transform_type == "none": |
|
spec = spec |
|
return spec |
|
|
|
@property |
|
def stft_kwargs(self): |
|
return {**self.istft_kwargs, "return_complex": True} |
|
|
|
@property |
|
def istft_kwargs(self): |
|
return dict( |
|
n_fft=self.n_fft, hop_length=self.hop_length, |
|
window=self.window, center=True |
|
) |
|
|
|
def _get_window(self, x): |
|
""" |
|
Retrieve an appropriate window for the given tensor x, matching the device. |
|
Caches the retrieved windows so that only one window tensor will be allocated per device. |
|
""" |
|
window = self.windows.get(x.device, None) |
|
if window is None: |
|
window = self.window.to(x.device) |
|
self.windows[x.device] = window |
|
return window |
|
|
|
def stft(self, sig): |
|
window = self._get_window(sig) |
|
return torch.stft(sig, **{**self.stft_kwargs, "window": window}) |
|
|
|
def istft(self, spec, length=None): |
|
window = self._get_window(spec) |
|
return torch.istft(spec, **{**self.istft_kwargs, "window": window, "length": length}) |
|
|
|
def train_dataloader(self): |
|
return DataLoader( |
|
self.train_set, batch_size=self.batch_size, |
|
num_workers=self.num_workers, pin_memory=self.gpu, shuffle=True |
|
) |
|
|
|
def val_dataloader(self): |
|
return DataLoader( |
|
self.valid_set, batch_size=self.batch_size, |
|
num_workers=self.num_workers, pin_memory=self.gpu, shuffle=False |
|
) |
|
|
|
def test_dataloader(self): |
|
return DataLoader( |
|
self.test_set, batch_size=self.batch_size, |
|
num_workers=self.num_workers, pin_memory=self.gpu, shuffle=False |
|
) |
|
|