import functools import numpy as np import torch import torch.nn as nn from sgmse.util.registry import Registry BackboneRegistry = Registry("Backbone") class GaussianFourierProjection(nn.Module): """Gaussian random features for encoding time steps.""" def __init__(self, embed_dim, scale=16, complex_valued=False): super().__init__() self.complex_valued = complex_valued if not complex_valued: # If the output is real-valued, we concatenate sin+cos of the features to avoid ambiguities. # Therefore, in this case the effective embed_dim is cut in half. For the complex-valued case, # we use complex numbers which each represent sin+cos directly, so the ambiguity is avoided directly, # and this halving is not necessary. embed_dim = embed_dim // 2 # Randomly sample weights during initialization. These weights are fixed # during optimization and are not trainable. self.W = nn.Parameter(torch.randn(embed_dim) * scale, requires_grad=False) def forward(self, t): t_proj = t[:, None] * self.W[None, :] * 2*np.pi if self.complex_valued: return torch.exp(1j * t_proj) else: return torch.cat([torch.sin(t_proj), torch.cos(t_proj)], dim=-1) class DiffusionStepEmbedding(nn.Module): """Diffusion-Step embedding as in DiffWave / Vaswani et al. 2017.""" def __init__(self, embed_dim, complex_valued=False): super().__init__() self.complex_valued = complex_valued if not complex_valued: # If the output is real-valued, we concatenate sin+cos of the features to avoid ambiguities. # Therefore, in this case the effective embed_dim is cut in half. For the complex-valued case, # we use complex numbers which each represent sin+cos directly, so the ambiguity is avoided directly, # and this halving is not necessary. embed_dim = embed_dim // 2 self.embed_dim = embed_dim def forward(self, t): fac = 10**(4*torch.arange(self.embed_dim, device=t.device) / (self.embed_dim-1)) inner = t[:, None] * fac[None, :] if self.complex_valued: return torch.exp(1j * inner) else: return torch.cat([torch.sin(inner), torch.cos(inner)], dim=-1) class ComplexLinear(nn.Module): """A potentially complex-valued linear layer. Reduces to a regular linear layer if `complex_valued=False`.""" def __init__(self, input_dim, output_dim, complex_valued): super().__init__() self.complex_valued = complex_valued if self.complex_valued: self.re = nn.Linear(input_dim, output_dim) self.im = nn.Linear(input_dim, output_dim) else: self.lin = nn.Linear(input_dim, output_dim) def forward(self, x): if self.complex_valued: return (self.re(x.real) - self.im(x.imag)) + 1j*(self.re(x.imag) + self.im(x.real)) else: return self.lin(x) class FeatureMapDense(nn.Module): """A fully connected layer that reshapes outputs to feature maps.""" def __init__(self, input_dim, output_dim, complex_valued=False): super().__init__() self.complex_valued = complex_valued self.dense = ComplexLinear(input_dim, output_dim, complex_valued=complex_valued) def forward(self, x): return self.dense(x)[..., None, None] def torch_complex_from_reim(re, im): return torch.view_as_complex(torch.stack([re, im], dim=-1)) class ArgsComplexMultiplicationWrapper(nn.Module): """Adapted from `asteroid`'s `complex_nn.py`, allowing args/kwargs to be passed through forward(). Make a complex-valued module `F` from a real-valued module `f` by applying complex multiplication rules: F(a + i b) = f1(a) - f1(b) + i (f2(b) + f2(a)) where `f1`, `f2` are instances of `f` that do *not* share weights. Args: module_cls (callable): A class or function that returns a Torch module/functional. Constructor of `f` in the formula above. Called 2x with `*args`, `**kwargs`, to construct the real and imaginary component modules. """ def __init__(self, module_cls, *args, **kwargs): super().__init__() self.re_module = module_cls(*args, **kwargs) self.im_module = module_cls(*args, **kwargs) def forward(self, x, *args, **kwargs): return torch_complex_from_reim( self.re_module(x.real, *args, **kwargs) - self.im_module(x.imag, *args, **kwargs), self.re_module(x.imag, *args, **kwargs) + self.im_module(x.real, *args, **kwargs), ) ComplexConv2d = functools.partial(ArgsComplexMultiplicationWrapper, nn.Conv2d) ComplexConvTranspose2d = functools.partial(ArgsComplexMultiplicationWrapper, nn.ConvTranspose2d)