import gradio as gr import torch import spaces from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread # Loading the tokenizer and model from Hugging Face's model hub. if torch.cuda.is_available(): tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-7B-Chat", torch_dtype=torch.float16, device_map="auto") # Defining a custom stopping criteria class for the model's text generation. class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [2] # IDs of tokens where the generation should stop. for stop_id in stop_ids: if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token. return True return False # Function to generate model predictions. @spaces.GPU(duration=600) def predict(message, history): stop = StopOnTokens() conversation = [] for user, assistant in history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer(prompt, return_tensors="pt").to("cuda") streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.95, top_k=50, temperature=0.7, repetition_penalty=1.0, num_beams=1, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Starting the generation in a separate thread. partial_message = "" for new_token in streamer: partial_message += new_token if '' in partial_message: # Breaking the loop if the stop token is generated. break yield partial_message # Setting up the Gradio chat interface. gr.ChatInterface(predict, title="Qwen1.5 7B Chat Demo", description="Warning. All answers are generated and may contain inaccurate information.", examples=['How do you cook fish?', 'Who is the president of the United States?'] ).launch() # Launching the web interface.