Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- UI.py +57 -0
- check_point1_0.pth +3 -0
- deploy.ipynb +195 -0
- network.py +127 -0
- train.ipynb +503 -0
- utils.py +138 -0
UI.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from utils import transformer, tensor_to_img
|
4 |
+
from network import Style_Transfer_Network
|
5 |
+
|
6 |
+
check_point = torch.load("/content/check_point.pth", map_location = torch.device('cpu'))
|
7 |
+
model = Style_Transfer_Network()
|
8 |
+
model.load_state_dict(check_point['state_dict'])
|
9 |
+
|
10 |
+
def style_transfer(content_img, style_strength, style_img_1 = None, iw_1 = 0, style_img_2 = None, iw_2 = 0, style_img_3 = None, iw_3 = 0, preserve_color = None):
|
11 |
+
transform = transformer(imsize = 512)
|
12 |
+
|
13 |
+
content = transform(content_img).unsqueeze(0)
|
14 |
+
|
15 |
+
iw = [iw_1, iw_2, iw_3]
|
16 |
+
interpolation_weights = [i/ sum(iw) for i in iw]
|
17 |
+
|
18 |
+
style_imgs = [style_img_1, style_img_2, style_img_3]
|
19 |
+
styles = []
|
20 |
+
for style_img in style_imgs:
|
21 |
+
if style_img is not None:
|
22 |
+
styles.append(transform(style_img).unsqueeze(0))
|
23 |
+
if preserve_color == "None": preserve_color = None
|
24 |
+
elif preserve_color == "Whitening": preserve_color = "batch_wct"
|
25 |
+
elif preserve_color == "Histogram matching": preserve_color = "histogram_matching"
|
26 |
+
with torch.no_grad():
|
27 |
+
stylized_img = model(content, styles, style_strength, interpolation_weights, preserve_color = preserve_color)
|
28 |
+
return tensor_to_img(stylized_img)
|
29 |
+
|
30 |
+
title = "Artistic Style Transfer"
|
31 |
+
|
32 |
+
content_img = gr.components.Image(label="Content image", type = "pil")
|
33 |
+
|
34 |
+
style_img_1 = gr.components.Image(label="Style images", type = "pil")
|
35 |
+
iw_1 = gr.components.Slider(0., 1., label = "Style 1 interpolation")
|
36 |
+
style_img_2 = gr.components.Image(label="Style images", type = "pil")
|
37 |
+
iw_2 = gr.components.Slider(0., 1., label = "Style 2 interpolation")
|
38 |
+
style_img_3 = gr.components.Image(label="Style images", type = "pil")
|
39 |
+
iw_3 = gr.components.Slider(0., 1., label = "Style 3 interpolation")
|
40 |
+
style_strength = gr.components.Slider(0., 1., label = "Adjust style strength")
|
41 |
+
preserve_color = gr.components.Dropdown(["None", "Whitening", "Histogram matching"], label = "Choose color preserving mode")
|
42 |
+
|
43 |
+
interface = gr.Interface(fn = style_transfer,
|
44 |
+
inputs = [content_img,
|
45 |
+
style_strength,
|
46 |
+
style_img_1,
|
47 |
+
iw_1,
|
48 |
+
style_img_2,
|
49 |
+
iw_2,
|
50 |
+
style_img_3,
|
51 |
+
iw_3,
|
52 |
+
preserve_color],
|
53 |
+
outputs = gr.components.Image(),
|
54 |
+
title = title
|
55 |
+
)
|
56 |
+
interface.queue()
|
57 |
+
interface.launch(share = True, debug = True)
|
check_point1_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b500176427a41788b7314c77b6fdbbc6d474fd255f94b7787f7ee123cc092056
|
3 |
+
size 28057273
|
deploy.ipynb
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"Note: you may need to restart the kernel to use updated packages.\n"
|
13 |
+
]
|
14 |
+
}
|
15 |
+
],
|
16 |
+
"source": [
|
17 |
+
"# Uncomment if you don't have the following modules\n",
|
18 |
+
"#pip install -qq gradio\n",
|
19 |
+
"#pip install -qq torch\n",
|
20 |
+
"#pip install -qq PIL\n",
|
21 |
+
"#pip install -qq torchvision"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 2,
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [],
|
29 |
+
"source": [
|
30 |
+
"import os\n",
|
31 |
+
"from PIL import Image\n",
|
32 |
+
"import torch\n",
|
33 |
+
"import torchvision\n",
|
34 |
+
"import torchvision.transforms as transforms\n",
|
35 |
+
"from utils import transformer, tensor_to_img\n",
|
36 |
+
"from network import Style_Transfer_Network\n",
|
37 |
+
"import gradio as gr"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": 3,
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"device = \"cpu\"\n",
|
47 |
+
"if torch.cuda.is_available(): device = \"cuda\""
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": 5,
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [
|
55 |
+
{
|
56 |
+
"name": "stderr",
|
57 |
+
"output_type": "stream",
|
58 |
+
"text": [
|
59 |
+
"C:\\Users\\VICTUS\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\torchvision\\models\\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n",
|
60 |
+
" warnings.warn(\n",
|
61 |
+
"C:\\Users\\VICTUS\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\torchvision\\models\\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG19_Weights.IMAGENET1K_V1`. You can also use `weights=VGG19_Weights.DEFAULT` to get the most up-to-date weights.\n",
|
62 |
+
" warnings.warn(msg)\n",
|
63 |
+
"C:\\Users\\VICTUS\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python310\\site-packages\\torchvision\\models\\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=None`.\n",
|
64 |
+
" warnings.warn(msg)\n"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"data": {
|
69 |
+
"text/plain": [
|
70 |
+
"<All keys matched successfully>"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
"execution_count": 5,
|
74 |
+
"metadata": {},
|
75 |
+
"output_type": "execute_result"
|
76 |
+
}
|
77 |
+
],
|
78 |
+
"source": [
|
79 |
+
"#import gradio as gr\n",
|
80 |
+
"check_point = torch.load('check_point1_0.pth', map_location = device)\n",
|
81 |
+
"transfer_network = Style_Transfer_Network().to(device)\n",
|
82 |
+
"transfer_network.load_state_dict(check_point['state_dict'])"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": 6,
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [
|
90 |
+
{
|
91 |
+
"name": "stdout",
|
92 |
+
"output_type": "stream",
|
93 |
+
"text": [
|
94 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
95 |
+
"Running on public URL: https://b4e9024bf7c14725c6.gradio.live\n",
|
96 |
+
"\n",
|
97 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"data": {
|
102 |
+
"text/html": [
|
103 |
+
"<div><iframe src=\"https://b4e9024bf7c14725c6.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
104 |
+
],
|
105 |
+
"text/plain": [
|
106 |
+
"<IPython.core.display.HTML object>"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
"metadata": {},
|
110 |
+
"output_type": "display_data"
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"data": {
|
114 |
+
"text/plain": []
|
115 |
+
},
|
116 |
+
"execution_count": 6,
|
117 |
+
"metadata": {},
|
118 |
+
"output_type": "execute_result"
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"source": [
|
122 |
+
"def style_transfer(content_img, style_strength, style_img_1 = None, iw_1 = 0, style_img_2 = None, iw_2 = 0, style_img_3 = None, iw_3 = 0, preserve_color = None):\n",
|
123 |
+
" transform = transformer(imsize = 512)\n",
|
124 |
+
"\n",
|
125 |
+
" content = transform(content_img).unsqueeze(0).to(device)\n",
|
126 |
+
"\n",
|
127 |
+
" iw = [iw_1, iw_2, iw_3]\n",
|
128 |
+
" interpolation_weights = [i/ sum(iw) for i in iw]\n",
|
129 |
+
"\n",
|
130 |
+
" style_imgs = [style_img_1, style_img_2, style_img_3]\n",
|
131 |
+
" styles = []\n",
|
132 |
+
" for style_img in style_imgs:\n",
|
133 |
+
" if style_img is not None:\n",
|
134 |
+
" styles.append(transform(style_img).unsqueeze(0).to(device))\n",
|
135 |
+
" if preserve_color == \"None\": preserve_color = None\n",
|
136 |
+
" elif preserve_color == \"Whitening & Coloring\": preserve_color = \"whiten_and_color\"\n",
|
137 |
+
" elif preserve_color == \"Histogram matching\": preserve_color = \"histogram_matching\"\n",
|
138 |
+
" with torch.no_grad():\n",
|
139 |
+
" stylized_img = transfer_network(content, styles, style_strength, interpolation_weights, preserve_color = preserve_color)\n",
|
140 |
+
" return tensor_to_img(stylized_img)\n",
|
141 |
+
"\n",
|
142 |
+
"title = \"Artistic Style Transfer\"\n",
|
143 |
+
"\n",
|
144 |
+
"content_img = gr.components.Image(label=\"Content image\", type = \"pil\")\n",
|
145 |
+
"\n",
|
146 |
+
"style_img_1 = gr.components.Image(label=\"Style images\", type = \"pil\")\n",
|
147 |
+
"iw_1 = gr.components.Slider(0., 1., label = \"Style 1 interpolation\")\n",
|
148 |
+
"style_img_2 = gr.components.Image(label=\"Style images\", type = \"pil\")\n",
|
149 |
+
"iw_2 = gr.components.Slider(0., 1., label = \"Style 2 interpolation\")\n",
|
150 |
+
"style_img_3 = gr.components.Image(label=\"Style images\", type = \"pil\")\n",
|
151 |
+
"iw_3 = gr.components.Slider(0., 1., label = \"Style 3 interpolation\")\n",
|
152 |
+
"style_strength = gr.components.Slider(0., 1., label = \"Adjust style strength\")\n",
|
153 |
+
"preserve_color = gr.components.Dropdown([\"None\", \"Whitening & Coloring\", \"Histogram matching\"], label = \"Choose color preserving mode\")\n",
|
154 |
+
"\n",
|
155 |
+
"interface = gr.Interface(fn = style_transfer,\n",
|
156 |
+
" inputs = [content_img,\n",
|
157 |
+
" style_strength,\n",
|
158 |
+
" style_img_1,\n",
|
159 |
+
" iw_1,\n",
|
160 |
+
" style_img_2,\n",
|
161 |
+
" iw_2,\n",
|
162 |
+
" style_img_3,\n",
|
163 |
+
" iw_3,\n",
|
164 |
+
" preserve_color],\n",
|
165 |
+
" outputs = gr.components.Image(),\n",
|
166 |
+
" title = title,\n",
|
167 |
+
" \n",
|
168 |
+
" )\n",
|
169 |
+
"interface.queue()\n",
|
170 |
+
"interface.launch(share = True)"
|
171 |
+
]
|
172 |
+
}
|
173 |
+
],
|
174 |
+
"metadata": {
|
175 |
+
"kernelspec": {
|
176 |
+
"display_name": "Python 3",
|
177 |
+
"language": "python",
|
178 |
+
"name": "python3"
|
179 |
+
},
|
180 |
+
"language_info": {
|
181 |
+
"codemirror_mode": {
|
182 |
+
"name": "ipython",
|
183 |
+
"version": 3
|
184 |
+
},
|
185 |
+
"file_extension": ".py",
|
186 |
+
"mimetype": "text/x-python",
|
187 |
+
"name": "python",
|
188 |
+
"nbconvert_exporter": "python",
|
189 |
+
"pygments_lexer": "ipython3",
|
190 |
+
"version": "3.10.11"
|
191 |
+
}
|
192 |
+
},
|
193 |
+
"nbformat": 4,
|
194 |
+
"nbformat_minor": 2
|
195 |
+
}
|
network.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision
|
4 |
+
from torchvision.models import vgg19
|
5 |
+
import utils
|
6 |
+
from utils import batch_wct, batch_histogram_matching
|
7 |
+
|
8 |
+
class Encoder(nn.Module):
|
9 |
+
def __init__(self, layers = [1, 6, 11, 20]):
|
10 |
+
super(Encoder, self).__init__()
|
11 |
+
vgg = torchvision.models.vgg19(pretrained=True).features
|
12 |
+
|
13 |
+
self.encoder = nn.ModuleList()
|
14 |
+
temp_seq = nn.Sequential()
|
15 |
+
for i in range(max(layers)+1):
|
16 |
+
temp_seq.add_module(str(i), vgg[i])
|
17 |
+
if i in layers:
|
18 |
+
self.encoder.append(temp_seq)
|
19 |
+
temp_seq = nn.Sequential()
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
features = []
|
23 |
+
for layer in self.encoder:
|
24 |
+
x = layer(x)
|
25 |
+
features.append(x)
|
26 |
+
return features
|
27 |
+
|
28 |
+
# need to copy the whole architecture bcuz we will need outputs from "layers" layers to compute the loss
|
29 |
+
class Decoder(nn.Module):
|
30 |
+
def __init__(self, layers=[1, 6, 11, 20]):
|
31 |
+
super(Decoder, self).__init__()
|
32 |
+
vgg = torchvision.models.vgg19(pretrained=False).features
|
33 |
+
|
34 |
+
self.decoder = nn.ModuleList()
|
35 |
+
temp_seq = nn.Sequential()
|
36 |
+
count = 0
|
37 |
+
for i in range(max(layers)-1, -1, -1):
|
38 |
+
if isinstance(vgg[i], nn.Conv2d):
|
39 |
+
# get number of in/out channels
|
40 |
+
out_channels = vgg[i].in_channels
|
41 |
+
in_channels = vgg[i].out_channels
|
42 |
+
kernel_size = vgg[i].kernel_size
|
43 |
+
|
44 |
+
# make a [reflection pad + convolution + relu] layer
|
45 |
+
temp_seq.add_module(str(count), nn.ReflectionPad2d(padding=(1,1,1,1)))
|
46 |
+
count += 1
|
47 |
+
temp_seq.add_module(str(count), nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size))
|
48 |
+
count += 1
|
49 |
+
temp_seq.add_module(str(count), nn.ReLU())
|
50 |
+
count += 1
|
51 |
+
|
52 |
+
# change down-sampling(MaxPooling) --> upsampling
|
53 |
+
elif isinstance(vgg[i], nn.MaxPool2d):
|
54 |
+
temp_seq.add_module(str(count), nn.Upsample(scale_factor=2))
|
55 |
+
count += 1
|
56 |
+
|
57 |
+
if i in layers:
|
58 |
+
self.decoder.append(temp_seq)
|
59 |
+
temp_seq = nn.Sequential()
|
60 |
+
|
61 |
+
# append last conv layers without ReLU activation
|
62 |
+
self.decoder.append(temp_seq[:-1])
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
y = x
|
66 |
+
for layer in self.decoder:
|
67 |
+
y = layer(y)
|
68 |
+
return y
|
69 |
+
|
70 |
+
class AdaIN(nn.Module):
|
71 |
+
def __init__(self):
|
72 |
+
super(AdaIN, self).__init__()
|
73 |
+
|
74 |
+
def forward(self, content, style, style_strength=1.0, eps=1e-5):
|
75 |
+
"""
|
76 |
+
content: tensor of shape B * C * H * W
|
77 |
+
style: tensor of shape B * C * H * W
|
78 |
+
note that AdaIN does computation on a pair of content - style img"""
|
79 |
+
b, c, h, w = content.size()
|
80 |
+
|
81 |
+
content_std, content_mean = torch.std_mean(content.view(b, c, -1), dim=2, keepdim=True)
|
82 |
+
style_std, style_mean = torch.std_mean(style.view(b, c, -1), dim=2, keepdim=True)
|
83 |
+
|
84 |
+
normalized_content = (content.view(b, c, -1) - content_mean) / (content_std+eps)
|
85 |
+
|
86 |
+
stylized_content = (normalized_content * style_std) + style_mean
|
87 |
+
|
88 |
+
output = (1-style_strength) * content + style_strength * stylized_content.view(b, c, h, w)
|
89 |
+
return output
|
90 |
+
|
91 |
+
class Style_Transfer_Network(nn.Module):
|
92 |
+
def __init__(self, layers = [1, 6, 11, 20]):
|
93 |
+
super(Style_Transfer_Network, self).__init__()
|
94 |
+
self.encoder = Encoder(layers)
|
95 |
+
self.decoder = Decoder(layers)
|
96 |
+
self.adain = AdaIN()
|
97 |
+
|
98 |
+
def forward(self, content, styles, style_strength = 1., interpolation_weights = None, preserve_color = None, train = False):
|
99 |
+
if interpolation_weights is None:
|
100 |
+
interpolation_weights = [1/len(styles)] * len(styles)
|
101 |
+
# encode the content image
|
102 |
+
content_feature = self.encoder(content)
|
103 |
+
|
104 |
+
# encode style images
|
105 |
+
style_features = []
|
106 |
+
for style in styles:
|
107 |
+
if preserve_color == 'whiten_and_color' or preserve_color == 'histogram_matching':
|
108 |
+
style = batch_wct(style, content)
|
109 |
+
style_features.append(self.encoder(style))
|
110 |
+
|
111 |
+
transformed_features = []
|
112 |
+
for style_feature, interpolation_weight in zip(style_features, interpolation_weights):
|
113 |
+
AdaIN_feature = self.adain(content_feature[-1], style_feature[-1], style_strength) * interpolation_weight
|
114 |
+
if preserve_color == 'histogram_matching':
|
115 |
+
AdaIN_feature *= 0.9
|
116 |
+
transformed_features.append(AdaIN_feature)
|
117 |
+
transformed_feature = sum(transformed_features)
|
118 |
+
|
119 |
+
stylized_image = self.decoder(transformed_feature)
|
120 |
+
if preserve_color == "whiten_and_color":
|
121 |
+
stylized_image = batch_wct(stylized_image, content)
|
122 |
+
if preserve_color == "histogram_matching":
|
123 |
+
stylized_image = batch_histogram_matching(stylized_image, content)
|
124 |
+
if train:
|
125 |
+
return stylized_image, transformed_feature
|
126 |
+
else:
|
127 |
+
return stylized_image
|
train.ipynb
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {
|
7 |
+
"id": "_qsogBHiKtzF",
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [
|
11 |
+
{
|
12 |
+
"name": "stdout",
|
13 |
+
"output_type": "stream",
|
14 |
+
"text": [
|
15 |
+
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
16 |
+
"datasets 2.4.0 requires dill<0.3.6, but you have dill 0.3.7 which is incompatible.\n",
|
17 |
+
"awscli 1.25.91 requires botocore==1.27.90, but you have botocore 1.31.17 which is incompatible.\u001b[0m\u001b[31m\n",
|
18 |
+
"\u001b[0m"
|
19 |
+
]
|
20 |
+
}
|
21 |
+
],
|
22 |
+
"source": [
|
23 |
+
"!pip install -qq hub\n",
|
24 |
+
"!pip install -qq flask"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 4,
|
30 |
+
"metadata": {
|
31 |
+
"id": "E8nHybN3KDIq",
|
32 |
+
"tags": []
|
33 |
+
},
|
34 |
+
"outputs": [],
|
35 |
+
"source": [
|
36 |
+
"import torch\n",
|
37 |
+
"import deeplake\n",
|
38 |
+
"from torch.utils.data import DataLoader\n",
|
39 |
+
"from torchvision import transforms\n",
|
40 |
+
"import torch.nn as nn\n",
|
41 |
+
"from network import Style_Transfer_Network, Encoder\n",
|
42 |
+
"from utils import save_img\n",
|
43 |
+
"import torchvision"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": 5,
|
49 |
+
"metadata": {
|
50 |
+
"colab": {
|
51 |
+
"base_uri": "https://localhost:8080/"
|
52 |
+
},
|
53 |
+
"id": "rnAFLCiIKqkM",
|
54 |
+
"outputId": "81b8f1c3-3974-4ee3-a284-99186c1502c7",
|
55 |
+
"tags": []
|
56 |
+
},
|
57 |
+
"outputs": [
|
58 |
+
{
|
59 |
+
"name": "stderr",
|
60 |
+
"output_type": "stream",
|
61 |
+
"text": [
|
62 |
+
"|"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"name": "stdout",
|
67 |
+
"output_type": "stream",
|
68 |
+
"text": [
|
69 |
+
"Opening dataset in read-only mode as you don't have write permissions.\n"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"name": "stderr",
|
74 |
+
"output_type": "stream",
|
75 |
+
"text": [
|
76 |
+
"-"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"name": "stdout",
|
81 |
+
"output_type": "stream",
|
82 |
+
"text": [
|
83 |
+
"This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/activeloop/wiki-art\n",
|
84 |
+
"\n"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"name": "stderr",
|
89 |
+
"output_type": "stream",
|
90 |
+
"text": [
|
91 |
+
"-"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"name": "stdout",
|
96 |
+
"output_type": "stream",
|
97 |
+
"text": [
|
98 |
+
"hub://activeloop/wiki-art loaded successfully.\n",
|
99 |
+
"\n"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"name": "stderr",
|
104 |
+
"output_type": "stream",
|
105 |
+
"text": [
|
106 |
+
" "
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"name": "stdout",
|
111 |
+
"output_type": "stream",
|
112 |
+
"text": [
|
113 |
+
"Opening dataset in read-only mode as you don't have write permissions.\n"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"name": "stderr",
|
118 |
+
"output_type": "stream",
|
119 |
+
"text": [
|
120 |
+
"\\"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"name": "stdout",
|
125 |
+
"output_type": "stream",
|
126 |
+
"text": [
|
127 |
+
"This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/activeloop/coco-test\n",
|
128 |
+
"\n"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"name": "stderr",
|
133 |
+
"output_type": "stream",
|
134 |
+
"text": [
|
135 |
+
"\\"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"name": "stdout",
|
140 |
+
"output_type": "stream",
|
141 |
+
"text": [
|
142 |
+
"hub://activeloop/coco-test loaded successfully.\n",
|
143 |
+
"\n"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"name": "stderr",
|
148 |
+
"output_type": "stream",
|
149 |
+
"text": [
|
150 |
+
" "
|
151 |
+
]
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"source": [
|
155 |
+
"reshape_size = 512\n",
|
156 |
+
"crop_size = 256\n",
|
157 |
+
"def any_to_rgb(img):\n",
|
158 |
+
" return img.convert('RGB')\n",
|
159 |
+
"preprocess = transforms.Compose([\n",
|
160 |
+
" transforms.Lambda(any_to_rgb),\n",
|
161 |
+
" transforms.ToTensor(),\n",
|
162 |
+
" transforms.Resize(reshape_size),\n",
|
163 |
+
" transforms.RandomCrop(crop_size),\n",
|
164 |
+
" transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),\n",
|
165 |
+
" ])\n",
|
166 |
+
"wiki_art_dataset = deeplake.load('hub://activeloop/wiki-art')\n",
|
167 |
+
"coco_dataset = deeplake.load('hub://activeloop/coco-test')\n",
|
168 |
+
"\n",
|
169 |
+
"style_data_loader = wiki_art_dataset.pytorch(batch_size = 8, num_workers = 0,\n",
|
170 |
+
" transform = {'images': preprocess, 'labels': None}, shuffle = True, decode_method = {'images':'pil'})\n",
|
171 |
+
"\n",
|
172 |
+
"cnt_data_loader = coco_dataset.pytorch(batch_size = 8, num_workers = 0,\n",
|
173 |
+
" transform = {'images': preprocess}, shuffle = True, decode_method = {'images': 'pil'})\n"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"execution_count": 7,
|
179 |
+
"metadata": {
|
180 |
+
"id": "XKqi9mMyoNUy",
|
181 |
+
"tags": []
|
182 |
+
},
|
183 |
+
"outputs": [],
|
184 |
+
"source": [
|
185 |
+
"mse_loss = nn.MSELoss(reduction = 'mean')\n",
|
186 |
+
"def content_loss(source, target):\n",
|
187 |
+
" cnt_loss = mse_loss(source, target)\n",
|
188 |
+
" return cnt_loss\n",
|
189 |
+
"\n",
|
190 |
+
"def style_loss(features, targets):\n",
|
191 |
+
" loss = 0\n",
|
192 |
+
" for feature, target in zip(features, targets):\n",
|
193 |
+
" B, C, H, W = feature.shape\n",
|
194 |
+
" feature_std, feature_mean = torch.std_mean(feature.view(B, C, -1), dim = 2)\n",
|
195 |
+
" target_std, target_mean = torch.std_mean(target.view(B, C, -1), dim = 2)\n",
|
196 |
+
" loss += mse_loss(feature_std, target_std) + mse_loss(feature_mean, target_mean)\n",
|
197 |
+
" return loss * 1. / len(features)\n",
|
198 |
+
"\"\"\"\n",
|
199 |
+
"def style_loss(features, targets, weights=None):\n",
|
200 |
+
" if weights is None:\n",
|
201 |
+
" weights = [1/len(features)] * len(features)\n",
|
202 |
+
" \n",
|
203 |
+
" loss = 0\n",
|
204 |
+
" for feature, target, weight in zip(features, targets, weights):\n",
|
205 |
+
" b, c, h, w = feature.size()\n",
|
206 |
+
" feature_std, feature_mean = torch.std_mean(feature.view(b, c, -1), dim=2)\n",
|
207 |
+
" target_std, target_mean = torch.std_mean(target.view(b, c, -1), dim=2)\n",
|
208 |
+
" loss += (mse_loss(feature_std, target_std) + mse_loss(feature_mean, target_mean))*weight\n",
|
209 |
+
" return loss\n",
|
210 |
+
"\"\"\"\n",
|
211 |
+
"def total_variational_loss(images):\n",
|
212 |
+
" loss = 0.0\n",
|
213 |
+
" B = images.shape[0]\n",
|
214 |
+
" vertical_up = images[:,:,:-1]\n",
|
215 |
+
" vertical_down = images[:,:,1:]\n",
|
216 |
+
"\n",
|
217 |
+
" horizontal_up = images[:,:,:,:-1]\n",
|
218 |
+
" horizontal_down = images[:,:,:,1:]\n",
|
219 |
+
"\n",
|
220 |
+
" loss = ((vertical_up - vertical_down) ** 2).sum() + \\\n",
|
221 |
+
" ((horizontal_up - horizontal_down) ** 2).sum()\n",
|
222 |
+
"\n",
|
223 |
+
" return loss * 1.0 / B"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": 8,
|
229 |
+
"metadata": {
|
230 |
+
"id": "JAeuZ2Sq6E-0",
|
231 |
+
"tags": []
|
232 |
+
},
|
233 |
+
"outputs": [],
|
234 |
+
"source": [
|
235 |
+
"if torch.cuda.is_available():\n",
|
236 |
+
" device = \"cuda\"\n",
|
237 |
+
"else: device = \"cpu\""
|
238 |
+
]
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "code",
|
242 |
+
"execution_count": 14,
|
243 |
+
"metadata": {},
|
244 |
+
"outputs": [
|
245 |
+
{
|
246 |
+
"data": {
|
247 |
+
"text/plain": [
|
248 |
+
"<All keys matched successfully>"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
"execution_count": 14,
|
252 |
+
"metadata": {},
|
253 |
+
"output_type": "execute_result"
|
254 |
+
}
|
255 |
+
],
|
256 |
+
"source": [
|
257 |
+
"style_transfer_network = Style_Transfer_Network().to(device)\n",
|
258 |
+
"check_point = torch.load(\"/notebooks/Style_transfer_with_ADAin/check_point.pth\", map_location = 'cuda')\n",
|
259 |
+
"style_transfer_network.load_state_dict(check_point['state_dict'])"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": 15,
|
265 |
+
"metadata": {},
|
266 |
+
"outputs": [],
|
267 |
+
"source": [
|
268 |
+
"def denormalize():\n",
|
269 |
+
" # out = (x - mean) / std\n",
|
270 |
+
" MEAN = [0.485, 0.456, 0.406]\n",
|
271 |
+
" STD = [0.229, 0.224, 0.225]\n",
|
272 |
+
" MEAN = [-mean/std for mean, std in zip(MEAN, STD)]\n",
|
273 |
+
" STD = [1/std for std in STD]\n",
|
274 |
+
" return transforms.Normalize(mean=MEAN, std=STD)\n",
|
275 |
+
"\n",
|
276 |
+
"def save_img(tensor, path):\n",
|
277 |
+
" denormalizer = denormalize() \n",
|
278 |
+
" if tensor.is_cuda:\n",
|
279 |
+
" tensor = tensor.cpu()\n",
|
280 |
+
" tensor = torchvision.utils.make_grid(tensor)\n",
|
281 |
+
" torchvision.utils.save_image(denormalizer(tensor).clamp_(0.0, 1.0), path) \n",
|
282 |
+
" return None"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": 16,
|
288 |
+
"metadata": {
|
289 |
+
"colab": {
|
290 |
+
"base_uri": "https://localhost:8080/"
|
291 |
+
},
|
292 |
+
"id": "1Y-JrlNquBwn",
|
293 |
+
"outputId": "31d5fe14-5315-40cd-8946-99c34ff41726",
|
294 |
+
"tags": []
|
295 |
+
},
|
296 |
+
"outputs": [],
|
297 |
+
"source": [
|
298 |
+
"def train_network(iteration, loss_weight = [0.0, 0.0, 0.0001], check_iter = 1, test_iter = 10):\n",
|
299 |
+
" for param in style_transfer_network.encoder.parameters():\n",
|
300 |
+
" # freeze parameter in the encoder network\n",
|
301 |
+
" param.requires_grad = False\n",
|
302 |
+
" optimizer = torch.optim.Adam(style_transfer_network.decoder.parameters(), lr = 1e-6)\n",
|
303 |
+
"\n",
|
304 |
+
" encoder_net = Encoder().to(device)\n",
|
305 |
+
" for param in encoder_net.parameters():\n",
|
306 |
+
" param.requires_grad = False\n",
|
307 |
+
" for i in range(iteration):\n",
|
308 |
+
" content_imgs = next(iter(cnt_data_loader))['images'].to(device)\n",
|
309 |
+
" style_imgs = next(iter(style_data_loader))['images'].to(device)\n",
|
310 |
+
"\n",
|
311 |
+
" output_imgs, transformed_features = style_transfer_network(content_imgs, style_imgs, train = True)\n",
|
312 |
+
"\n",
|
313 |
+
" output_features = encoder_net(output_imgs)\n",
|
314 |
+
" style_features = encoder_net(style_imgs)\n",
|
315 |
+
"\n",
|
316 |
+
" cnt_loss = content_loss(transformed_features, output_features[-1])\n",
|
317 |
+
" st_loss = style_loss(output_features, style_features)\n",
|
318 |
+
" tv_loss = total_variational_loss(output_imgs)\n",
|
319 |
+
" cnt_w, style_w, tv_w = loss_weight\n",
|
320 |
+
" total_loss = cnt_w * tv_loss + style_w * st_loss + tv_w * tv_loss\n",
|
321 |
+
"\n",
|
322 |
+
" optimizer.zero_grad()\n",
|
323 |
+
" total_loss.backward()\n",
|
324 |
+
" optimizer.step()\n",
|
325 |
+
"\n",
|
326 |
+
" if i % check_iter == 0:\n",
|
327 |
+
" print('-' * 80)\n",
|
328 |
+
" print(\"Iteration {} loss: {}\".format(i, total_loss))\n",
|
329 |
+
"\n",
|
330 |
+
" if i % test_iter == 0:\n",
|
331 |
+
" #save_img(torch.cat([content_imgs[0], style_imgs[0], output_imgs[0]], dim = 0), \"training_image.png\")\n",
|
332 |
+
" torch.save({'iteration':iteration+1,\n",
|
333 |
+
" 'state_dict':style_transfer_network.state_dict()},\n",
|
334 |
+
" 'check_point1.pth')"
|
335 |
+
]
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"cell_type": "code",
|
339 |
+
"execution_count": 17,
|
340 |
+
"metadata": {},
|
341 |
+
"outputs": [
|
342 |
+
{
|
343 |
+
"name": "stdout",
|
344 |
+
"output_type": "stream",
|
345 |
+
"text": [
|
346 |
+
"--------------------------------------------------------------------------------\n",
|
347 |
+
"Iteration 0 loss: 0.8845198750495911\n",
|
348 |
+
"--------------------------------------------------------------------------------\n",
|
349 |
+
"Iteration 1 loss: 1.8098524808883667\n",
|
350 |
+
"--------------------------------------------------------------------------------\n",
|
351 |
+
"Iteration 2 loss: 1.868203043937683\n",
|
352 |
+
"--------------------------------------------------------------------------------\n",
|
353 |
+
"Iteration 3 loss: 1.1070071458816528\n",
|
354 |
+
"--------------------------------------------------------------------------------\n",
|
355 |
+
"Iteration 4 loss: 2.0751609802246094\n",
|
356 |
+
"--------------------------------------------------------------------------------\n",
|
357 |
+
"Iteration 5 loss: 2.7107627391815186\n",
|
358 |
+
"--------------------------------------------------------------------------------\n",
|
359 |
+
"Iteration 6 loss: 1.4618340730667114\n",
|
360 |
+
"--------------------------------------------------------------------------------\n",
|
361 |
+
"Iteration 7 loss: 1.2351319789886475\n",
|
362 |
+
"--------------------------------------------------------------------------------\n",
|
363 |
+
"Iteration 8 loss: 1.3090686798095703\n",
|
364 |
+
"--------------------------------------------------------------------------------\n",
|
365 |
+
"Iteration 9 loss: 1.7165802717208862\n",
|
366 |
+
"--------------------------------------------------------------------------------\n",
|
367 |
+
"Iteration 10 loss: 1.9655226469039917\n",
|
368 |
+
"--------------------------------------------------------------------------------\n",
|
369 |
+
"Iteration 11 loss: 1.8032971620559692\n",
|
370 |
+
"--------------------------------------------------------------------------------\n",
|
371 |
+
"Iteration 12 loss: 1.757157802581787\n",
|
372 |
+
"--------------------------------------------------------------------------------\n",
|
373 |
+
"Iteration 13 loss: 1.2641586065292358\n",
|
374 |
+
"--------------------------------------------------------------------------------\n",
|
375 |
+
"Iteration 14 loss: 1.230526328086853\n",
|
376 |
+
"--------------------------------------------------------------------------------\n",
|
377 |
+
"Iteration 15 loss: 1.8332327604293823\n",
|
378 |
+
"--------------------------------------------------------------------------------\n",
|
379 |
+
"Iteration 16 loss: 2.347355365753174\n",
|
380 |
+
"--------------------------------------------------------------------------------\n",
|
381 |
+
"Iteration 17 loss: 0.8620480298995972\n",
|
382 |
+
"--------------------------------------------------------------------------------\n",
|
383 |
+
"Iteration 18 loss: 1.572771668434143\n",
|
384 |
+
"--------------------------------------------------------------------------------\n",
|
385 |
+
"Iteration 19 loss: 2.281660795211792\n",
|
386 |
+
"--------------------------------------------------------------------------------\n",
|
387 |
+
"Iteration 20 loss: 1.417534589767456\n",
|
388 |
+
"--------------------------------------------------------------------------------\n",
|
389 |
+
"Iteration 21 loss: 1.848774790763855\n",
|
390 |
+
"--------------------------------------------------------------------------------\n",
|
391 |
+
"Iteration 22 loss: 1.1456807851791382\n",
|
392 |
+
"--------------------------------------------------------------------------------\n",
|
393 |
+
"Iteration 23 loss: 1.2357560396194458\n",
|
394 |
+
"--------------------------------------------------------------------------------\n",
|
395 |
+
"Iteration 24 loss: 0.6565238833427429\n",
|
396 |
+
"--------------------------------------------------------------------------------\n",
|
397 |
+
"Iteration 25 loss: 1.2375402450561523\n",
|
398 |
+
"--------------------------------------------------------------------------------\n",
|
399 |
+
"Iteration 26 loss: 2.1140313148498535\n",
|
400 |
+
"--------------------------------------------------------------------------------\n",
|
401 |
+
"Iteration 27 loss: 1.0238616466522217\n",
|
402 |
+
"--------------------------------------------------------------------------------\n",
|
403 |
+
"Iteration 28 loss: 2.618056058883667\n",
|
404 |
+
"--------------------------------------------------------------------------------\n",
|
405 |
+
"Iteration 29 loss: 1.1616159677505493\n",
|
406 |
+
"--------------------------------------------------------------------------------\n",
|
407 |
+
"Iteration 30 loss: 1.919601559638977\n",
|
408 |
+
"--------------------------------------------------------------------------------\n",
|
409 |
+
"Iteration 31 loss: 1.0250651836395264\n",
|
410 |
+
"--------------------------------------------------------------------------------\n",
|
411 |
+
"Iteration 32 loss: 1.1823596954345703\n",
|
412 |
+
"--------------------------------------------------------------------------------\n",
|
413 |
+
"Iteration 33 loss: 0.8185012936592102\n",
|
414 |
+
"--------------------------------------------------------------------------------\n",
|
415 |
+
"Iteration 34 loss: 1.1374247074127197\n",
|
416 |
+
"--------------------------------------------------------------------------------\n",
|
417 |
+
"Iteration 35 loss: 1.9250235557556152\n",
|
418 |
+
"--------------------------------------------------------------------------------\n",
|
419 |
+
"Iteration 36 loss: 1.466286540031433\n"
|
420 |
+
]
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"name": "stderr",
|
424 |
+
"output_type": "stream",
|
425 |
+
"text": [
|
426 |
+
"/usr/local/lib/python3.9/dist-packages/PIL/Image.py:3035: DecompressionBombWarning: Image size (99962094 pixels) exceeds limit of 89478485 pixels, could be decompression bomb DOS attack.\n",
|
427 |
+
" warnings.warn(\n"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"name": "stdout",
|
432 |
+
"output_type": "stream",
|
433 |
+
"text": [
|
434 |
+
"--------------------------------------------------------------------------------\n",
|
435 |
+
"Iteration 37 loss: 0.7055997848510742\n",
|
436 |
+
"--------------------------------------------------------------------------------\n",
|
437 |
+
"Iteration 38 loss: 1.3557121753692627\n",
|
438 |
+
"--------------------------------------------------------------------------------\n",
|
439 |
+
"Iteration 39 loss: 1.0668007135391235\n",
|
440 |
+
"--------------------------------------------------------------------------------\n",
|
441 |
+
"Iteration 40 loss: 1.1934823989868164\n",
|
442 |
+
"--------------------------------------------------------------------------------\n",
|
443 |
+
"Iteration 41 loss: 0.7692145109176636\n",
|
444 |
+
"--------------------------------------------------------------------------------\n",
|
445 |
+
"Iteration 42 loss: 1.141457438468933\n",
|
446 |
+
"--------------------------------------------------------------------------------\n",
|
447 |
+
"Iteration 43 loss: 1.5705242156982422\n",
|
448 |
+
"--------------------------------------------------------------------------------\n",
|
449 |
+
"Iteration 44 loss: 1.7851486206054688\n",
|
450 |
+
"--------------------------------------------------------------------------------\n",
|
451 |
+
"Iteration 45 loss: 0.7252503633499146\n",
|
452 |
+
"--------------------------------------------------------------------------------\n",
|
453 |
+
"Iteration 46 loss: 1.1291860342025757\n",
|
454 |
+
"--------------------------------------------------------------------------------\n",
|
455 |
+
"Iteration 47 loss: 1.3588659763336182\n",
|
456 |
+
"--------------------------------------------------------------------------------\n",
|
457 |
+
"Iteration 48 loss: 0.9960977435112\n",
|
458 |
+
"--------------------------------------------------------------------------------\n",
|
459 |
+
"Iteration 49 loss: 0.9272828102111816\n",
|
460 |
+
"--------------------------------------------------------------------------------\n",
|
461 |
+
"Iteration 50 loss: 2.4692296981811523\n"
|
462 |
+
]
|
463 |
+
}
|
464 |
+
],
|
465 |
+
"source": [
|
466 |
+
"train_network(iteration = 300)"
|
467 |
+
]
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"cell_type": "code",
|
471 |
+
"execution_count": null,
|
472 |
+
"metadata": {},
|
473 |
+
"outputs": [],
|
474 |
+
"source": []
|
475 |
+
}
|
476 |
+
],
|
477 |
+
"metadata": {
|
478 |
+
"accelerator": "GPU",
|
479 |
+
"colab": {
|
480 |
+
"gpuType": "T4",
|
481 |
+
"provenance": []
|
482 |
+
},
|
483 |
+
"kernelspec": {
|
484 |
+
"display_name": "Python 3 (ipykernel)",
|
485 |
+
"language": "python",
|
486 |
+
"name": "python3"
|
487 |
+
},
|
488 |
+
"language_info": {
|
489 |
+
"codemirror_mode": {
|
490 |
+
"name": "ipython",
|
491 |
+
"version": 3
|
492 |
+
},
|
493 |
+
"file_extension": ".py",
|
494 |
+
"mimetype": "text/x-python",
|
495 |
+
"name": "python",
|
496 |
+
"nbconvert_exporter": "python",
|
497 |
+
"pygments_lexer": "ipython3",
|
498 |
+
"version": "3.9.16"
|
499 |
+
}
|
500 |
+
},
|
501 |
+
"nbformat": 4,
|
502 |
+
"nbformat_minor": 4
|
503 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from skimage.exposure import match_histograms
|
2 |
+
from skimage import io
|
3 |
+
import os
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import torchvision
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
|
9 |
+
def normalize():
|
10 |
+
MEAN = [0.485, 0.456, 0.406]
|
11 |
+
STD = [0.229, 0.224, 0.225]
|
12 |
+
return transforms.Normalize(mean = MEAN, std = STD)
|
13 |
+
|
14 |
+
def denormalize():
|
15 |
+
# out = (x - mean) / std
|
16 |
+
MEAN = [0.485, 0.456, 0.406]
|
17 |
+
STD = [0.229, 0.224, 0.225]
|
18 |
+
MEAN = [-mean/std for mean, std in zip(MEAN, STD)]
|
19 |
+
STD = [1/std for std in STD]
|
20 |
+
return transforms.Normalize(mean=MEAN, std=STD)
|
21 |
+
|
22 |
+
def transformer(imsize = None, cropsize = None):
|
23 |
+
transformer = []
|
24 |
+
if imsize:
|
25 |
+
transformer.append(transforms.Resize(imsize))
|
26 |
+
if cropsize:
|
27 |
+
transformer.append(transforms.RandomCrop(cropsize))
|
28 |
+
|
29 |
+
transformer.append(transforms.ToTensor())
|
30 |
+
transformer.append(normalize())
|
31 |
+
return transforms.Compose(transformer)
|
32 |
+
|
33 |
+
def load_img(path, imsize = None, cropsize = None):
|
34 |
+
transform = transformer(imsize = imsize, cropsize = cropsize)
|
35 |
+
# torchvision.transforms supports PIL Images
|
36 |
+
return transform(Image.open(path).convert("RGB")).unsqueeze(0)
|
37 |
+
|
38 |
+
def tensor_to_img(tensor):
|
39 |
+
denormalizer = denormalize()
|
40 |
+
if tensor.device == "cuda":
|
41 |
+
tensor = tensor.cpu()
|
42 |
+
#
|
43 |
+
tensor = torchvision.utils.make_grid(denormalizer(tensor.squeeze()))
|
44 |
+
image = transforms.functional.to_pil_image(tensor.clamp_(0., 1.))
|
45 |
+
return image
|
46 |
+
|
47 |
+
def save_img(tensor, path):
|
48 |
+
pass
|
49 |
+
|
50 |
+
def histogram_matching(image, reference):
|
51 |
+
"""
|
52 |
+
img: style image
|
53 |
+
reference: original img
|
54 |
+
output: style image that resembles original img's color histogram
|
55 |
+
"""
|
56 |
+
device = image.device
|
57 |
+
reference = reference.cpu().permute(1, 2, 0).numpy()
|
58 |
+
image = image.cpu().permute(1, 2, 0).numpy()
|
59 |
+
output = match_histograms(image, reference, multichannel = True)
|
60 |
+
return torch.Tensor(output).permute(2, 0, 1).to(device)
|
61 |
+
|
62 |
+
def batch_histogram_matching(images, reference):
|
63 |
+
"""
|
64 |
+
images of shape BxCxHxW
|
65 |
+
reference of shape 1xCxHxW
|
66 |
+
"""
|
67 |
+
reference = reference.squeeze()
|
68 |
+
output = torch.zeros_like(images, dtype = images.dtype)
|
69 |
+
B = images.shape[0]
|
70 |
+
for i in range(B):
|
71 |
+
output[i] = histogram_matching(images[i], reference)
|
72 |
+
return output
|
73 |
+
|
74 |
+
def statistics(f, inverse = False, eps = 1e-10):
|
75 |
+
c, h, w = f.shape
|
76 |
+
f_mean = torch.mean(f.view(c, h*w), dim=1, keepdim=True)
|
77 |
+
f_zeromean = f.view(c, h*w) - f_mean
|
78 |
+
f_cov = torch.mm(f_zeromean, f_zeromean.t())
|
79 |
+
|
80 |
+
u, s, v = torch.svd(f_cov)
|
81 |
+
|
82 |
+
k = c
|
83 |
+
for i in range(c):
|
84 |
+
if s[i] < eps:
|
85 |
+
k = i
|
86 |
+
break
|
87 |
+
if inverse:
|
88 |
+
p = -0.5
|
89 |
+
else:
|
90 |
+
p = 0.5
|
91 |
+
|
92 |
+
f_covsqrt = torch.mm(torch.mm(u[:, 0:k], torch.diag(s[0:k].pow(p))), v[:, 0:k].t())
|
93 |
+
return f_mean, f_covsqrt
|
94 |
+
|
95 |
+
def whitening(f):
|
96 |
+
c, h, w = f.shape
|
97 |
+
f_mean, f_inv_covsqrt = statistics(f, inverse = True)
|
98 |
+
whitened_f = torch.mm(f_inv_covsqrt, f.view(c, h*w) - f_mean)
|
99 |
+
return whitened_f.view(c, h, w)
|
100 |
+
|
101 |
+
def batch_whitening(f):
|
102 |
+
b, c, h, w = f.shape
|
103 |
+
whitened_f = torch.zeros(size = (b, c, h, w), dtype = f.dtype, device = f.device)
|
104 |
+
for i in range(b):
|
105 |
+
whitened_f[i] = whitening(f[i])
|
106 |
+
return whitened_f
|
107 |
+
|
108 |
+
def coloring(style, content):
|
109 |
+
s_c, s_h, s_w = style.shape
|
110 |
+
c_mean, c_covsqrt = statistics(content, inverse = False)
|
111 |
+
colored_s = torch.mm(c_covsqrt, whitening(style).view(s_c, s_h * s_w)) + c_mean
|
112 |
+
return colored_s.view(s_c, s_h, s_w)
|
113 |
+
|
114 |
+
def batch_coloring(styles, content):
|
115 |
+
colored_styles = torch.zeros_like(styles, dtype = styles.dtype, device = styles.device)
|
116 |
+
for i, style in enumerate(styles):
|
117 |
+
colored_styles[i] = coloring(style, content[i])
|
118 |
+
|
119 |
+
return colored_styles
|
120 |
+
|
121 |
+
def batch_wct(styles, content):
|
122 |
+
whitened_styles = batch_whitening(styles)
|
123 |
+
return batch_coloring(whitened_styles, content)
|
124 |
+
|
125 |
+
class Image_Set(torch.utils.data.Dataset):
|
126 |
+
def __init__(self, root_path, imsize, cropsize):
|
127 |
+
super(Image_Set, self).__init__()
|
128 |
+
self.root_path = root_path
|
129 |
+
self.files = sorted(os.listdir(self.root_path))
|
130 |
+
self.transformer = transformer(imsize, cropsize)
|
131 |
+
|
132 |
+
def __len__(self):
|
133 |
+
return len(self.file_names)
|
134 |
+
|
135 |
+
def __getitem__(self, index):
|
136 |
+
image = Image.open(os.path.join(self.root_path + self.file_names[index])).convert("RGB")
|
137 |
+
return self.transformer(image)
|
138 |
+
|