import gradio as gr import torch from utils import transformer, tensor_to_img from network import Style_Transfer_Network check_point = torch.load("/content/check_point.pth", map_location = torch.device('cpu')) model = Style_Transfer_Network() model.load_state_dict(check_point['state_dict']) def style_transfer(content_img, style_strength, style_img_1 = None, iw_1 = 0, style_img_2 = None, iw_2 = 0, style_img_3 = None, iw_3 = 0, preserve_color = None): transform = transformer(imsize = 512) content = transform(content_img).unsqueeze(0) iw = [iw_1, iw_2, iw_3] interpolation_weights = [i/ sum(iw) for i in iw] style_imgs = [style_img_1, style_img_2, style_img_3] styles = [] for style_img in style_imgs: if style_img is not None: styles.append(transform(style_img).unsqueeze(0)) if preserve_color == "None": preserve_color = None elif preserve_color == "Whitening": preserve_color = "batch_wct" elif preserve_color == "Histogram matching": preserve_color = "histogram_matching" with torch.no_grad(): stylized_img = model(content, styles, style_strength, interpolation_weights, preserve_color = preserve_color) return tensor_to_img(stylized_img) title = "Artistic Style Transfer" content_img = gr.components.Image(label="Content image", type = "pil") style_img_1 = gr.components.Image(label="Style images", type = "pil") iw_1 = gr.components.Slider(0., 1., label = "Style 1 interpolation") style_img_2 = gr.components.Image(label="Style images", type = "pil") iw_2 = gr.components.Slider(0., 1., label = "Style 2 interpolation") style_img_3 = gr.components.Image(label="Style images", type = "pil") iw_3 = gr.components.Slider(0., 1., label = "Style 3 interpolation") style_strength = gr.components.Slider(0., 1., label = "Adjust style strength") preserve_color = gr.components.Dropdown(["None", "Whitening", "Histogram matching"], label = "Choose color preserving mode") interface = gr.Interface(fn = style_transfer, inputs = [content_img, style_strength, style_img_1, iw_1, style_img_2, iw_2, style_img_3, iw_3, preserve_color], outputs = gr.components.Image(), title = title ) interface.queue() interface.launch(share = True, debug = True)