123LETSPLAY commited on
Commit
e1cc11d
1 Parent(s): 0e9a7e8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from PIL import Image
3
+ import gradio as gr
4
+ from sam2.sam2_image_predictor import SAM2ImagePredictor
5
+
6
+ # Load the SAM2 model
7
+ predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
8
+
9
+ # Function to predict masks from the image and prompts
10
+ def generate_mask(image, prompt):
11
+ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
12
+ predictor.set_image(image)
13
+ masks, _, _ = predictor.predict(prompt)
14
+ return masks[0] # Returning the first mask for simplicity
15
+
16
+ # Set up the Gradio interface
17
+ with gr.Blocks() as demo:
18
+ gr.Markdown("# Image Segmentation using SAM2")
19
+
20
+ # Input: Upload an image
21
+ image_input = gr.Image(label="Upload Image", type="pil")
22
+
23
+ # Input: Text prompt for image segmentation
24
+ prompt_input = gr.Textbox(label="Enter segmentation prompt", placeholder="Describe what you want to segment")
25
+
26
+ # Output: Display the mask generated by the SAM2 model
27
+ output_mask = gr.Image(label="Generated Mask")
28
+
29
+ # Button to trigger mask generation
30
+ generate_button = gr.Button("Generate Mask")
31
+
32
+ # Link button click with the segmentation function
33
+ generate_button.click(fn=generate_mask, inputs=[image_input, prompt_input], outputs=output_mask)
34
+
35
+ # Launch the Gradio app
36
+ demo.launch()