sovits_aishell3 / inference.py
14-26AA's picture
Update inference.py
d1aeb88
raw
history blame
2.99 kB
import onnxruntime
import numpy as np
import pyworld as pw
import librosa
import soundfile as sf
def resize2d(source, target_len):
source[source<0.001] = np.nan
target = np.interp(np.linspace(0, len(source)-1, num=target_len,endpoint=True), np.arange(0, len(source)), source)
return np.nan_to_num(target)
def _calculate_f0(input: np.ndarray,length,sr,f0min,f0max,
use_continuous_f0: bool=True,
use_log_f0: bool=True) -> np.ndarray:
input = input.astype(float)
frame_period = len(input)/sr/(length)*1000
f0, timeaxis = pw.dio(
input,
fs=sr,
f0_floor=f0min,
f0_ceil=f0max,
frame_period=frame_period)
f0 = pw.stonemask(input, f0, timeaxis, sr)
if use_log_f0:
nonzero_idxs = np.where(f0 != 0)[0]
f0[nonzero_idxs] = np.log(f0[nonzero_idxs])
return f0.reshape(-1)
def get_text(wav,sr,transform=1.0):
#wav, sr = librosa.load(file,sr=None)
if sr<16000:
return 'sample rate too low'
if len(wav.shape) > 1:
wav = librosa.to_mono(wav)
if sr!=16000:
wav16 = librosa.resample(wav, sr, 16000)
else:
wav16=wav
source = {"source":np.expand_dims(np.expand_dims(wav16,0),0)}
hubertsession = onnxruntime.InferenceSession("hubert.onnx")#,providers=['CUDAExecutionProvider'])
units = np.array(hubertsession.run(['embed'], source)[0])
f0=_calculate_f0(wav,units.shape[1],sr,
f0min=librosa.note_to_hz('C2'),
f0max=librosa.note_to_hz('C7'))
f0=resize2d(f0,units.shape[1])
f0[f0!=0]=f0[f0!=0]+np.log(transform)
expf0 = np.expand_dims(f0,(0,2))
output=np.concatenate((units,expf0,expf0),axis=2)
return output.astype(np.float32),f0
def getkey(key):
return np.power(2,key/12.0)
def infer(f,speaker,key,reqf0=False):
speaker=int(speaker[7:])
if f is None:
return "You need to upload an audio", None
sr, audio = f
duration = audio.shape[0] / sr
if duration > 120:
return "请上传小于2min的音频", None
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
x,sourcef0 = get_text(audio,sr,getkey(key))
x_lengths = [np.size(x,1)]
sid = [speaker]
ort_inputs = {'x':x,'x_lengths':x_lengths,'sid':sid,"noise_scale":[0.667],"length_scale":[1.0],"noise_scale_w":[0.8]}
infersession = onnxruntime.InferenceSession("onnxmodel334.onnx")#,providers=['CUDAExecutionProvider'])
ort_output = infersession.run(['audio'], ort_inputs)
#sf.write(o,ort_output[0][0][0],22050,'PCM_16',format='wav')
genf0=np.array([])
if reqf0:
wav, sr = librosa.load(o,sr=None)
genf0=_calculate_f0(wav,x_lengths[0],sr,
f0min=librosa.note_to_hz('C2'),
f0max=librosa.note_to_hz('C7'))
genf0=resize2d(genf0,x_lengths[0])
return 'success',(22050,ort_output[0][0][0])#sourcef0.tolist(),genf0.tolist()