Spaces:
Build error
Build error
Upload inference.py
Browse files- inference.py +74 -0
inference.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import onnxruntime
|
2 |
+
import numpy as np
|
3 |
+
import pyworld as pw
|
4 |
+
import librosa
|
5 |
+
import soundfile as sf
|
6 |
+
|
7 |
+
def resize2d(source, target_len):
|
8 |
+
source[source<0.001] = np.nan
|
9 |
+
target = np.interp(np.linspace(0, len(source)-1, num=target_len,endpoint=True), np.arange(0, len(source)), source)
|
10 |
+
return np.nan_to_num(target)
|
11 |
+
|
12 |
+
def _calculate_f0(input: np.ndarray,length,sr,f0min,f0max,
|
13 |
+
use_continuous_f0: bool=True,
|
14 |
+
use_log_f0: bool=True) -> np.ndarray:
|
15 |
+
input = input.astype(float)
|
16 |
+
frame_period = len(input)/sr/(length)*1000
|
17 |
+
f0, timeaxis = pw.dio(
|
18 |
+
input,
|
19 |
+
fs=sr,
|
20 |
+
f0_floor=f0min,
|
21 |
+
f0_ceil=f0max,
|
22 |
+
frame_period=frame_period)
|
23 |
+
f0 = pw.stonemask(input, f0, timeaxis, sr)
|
24 |
+
if use_log_f0:
|
25 |
+
nonzero_idxs = np.where(f0 != 0)[0]
|
26 |
+
f0[nonzero_idxs] = np.log(f0[nonzero_idxs])
|
27 |
+
return f0.reshape(-1)
|
28 |
+
|
29 |
+
|
30 |
+
def get_text(file,transform=1.0):
|
31 |
+
|
32 |
+
wav, sr = librosa.load(file,sr=None)
|
33 |
+
if sr<16000:
|
34 |
+
return 'sample rate too low'
|
35 |
+
if len(wav.shape) > 1:
|
36 |
+
wav = librosa.to_mono(wav)
|
37 |
+
if sr!=16000:
|
38 |
+
wav16 = librosa.resample(wav, sr, 16000)
|
39 |
+
else:
|
40 |
+
wav16=wav
|
41 |
+
|
42 |
+
source = {"source":np.expand_dims(np.expand_dims(wav16,0),0)}
|
43 |
+
hubertsession = onnxruntime.InferenceSession("infer/onnx/hubert.onnx")#,providers=['CUDAExecutionProvider'])
|
44 |
+
units = np.array(hubertsession.run(['embed'], source)[0])
|
45 |
+
f0=_calculate_f0(wav,units.shape[1],sr,
|
46 |
+
f0min=librosa.note_to_hz('C2'),
|
47 |
+
f0max=librosa.note_to_hz('C7'))
|
48 |
+
f0=resize2d(f0,units.shape[1])
|
49 |
+
f0[f0!=0]=f0[f0!=0]+np.log(transform)
|
50 |
+
expf0 = np.expand_dims(f0,(0,2))
|
51 |
+
output=np.concatenate((units,expf0,expf0),axis=2)
|
52 |
+
return output.astype(np.float32),f0
|
53 |
+
|
54 |
+
def getkey(key):
|
55 |
+
return np.power(2,key/12.0)
|
56 |
+
|
57 |
+
def infer(f,o,speaker,key,reqf0=False):
|
58 |
+
x,sourcef0 = get_text(f,getkey(key))
|
59 |
+
x_lengths = [np.size(x,1)]
|
60 |
+
sid = [speaker]
|
61 |
+
ort_inputs = {'x':x,'x_lengths':x_lengths,'sid':sid,"noise_scale":[0.667],"length_scale":[1.0],"noise_scale_w":[0.8]}
|
62 |
+
infersession = onnxruntime.InferenceSession("infer/onnx/onnxmodel211.onnx")#,providers=['CUDAExecutionProvider'])
|
63 |
+
ort_output = infersession.run(['audio'], ort_inputs)
|
64 |
+
sf.write(o,ort_output[0][0][0],22050,'PCM_16',format='wav')
|
65 |
+
o.seek(0,0)
|
66 |
+
genf0=np.array([])
|
67 |
+
if reqf0:
|
68 |
+
wav, sr = librosa.load(o,sr=None)
|
69 |
+
genf0=_calculate_f0(wav,x_lengths[0],sr,
|
70 |
+
f0min=librosa.note_to_hz('C2'),
|
71 |
+
f0max=librosa.note_to_hz('C7'))
|
72 |
+
genf0=resize2d(genf0,x_lengths[0])
|
73 |
+
o.seek(0,0)
|
74 |
+
return sourcef0.tolist(),genf0.tolist()
|