File size: 2,190 Bytes
8a57a60
 
 
 
212ebbf
 
8a57a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212ebbf
 
8a57a60
212ebbf
8a57a60
212ebbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a57a60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from transformers import TapexTokenizer, BartForConditionalGeneration
import pandas as pd
import datetime
import torch
import gradio as gr

def execute_query(query, csv_file):
    a = datetime.datetime.now()

    table = pd.read_csv(csv_file.name, delimiter=",")
    table = table.astype(str)

    model_name = "microsoft/tapex-large-finetuned-wtq"
    model = BartForConditionalGeneration.from_pretrained(model_name)
    tokenizer = TapexTokenizer.from_pretrained(model_name)

    queries = [query]

    encoding = tokenizer(table=table, query=queries, padding=True, return_tensors="pt", truncation=True)
    outputs = model.generate(**encoding)
    ans = tokenizer.batch_decode(outputs, skip_special_tokens=True)

    query_result = {
        "query": query,
        "answer": ans[0]
    }

    b = datetime.datetime.now()
    print(b - a)

    return query_result, table

def main():
    description = "Querying a CSV using the TAPEX model. You can ask a question about tabular data, and the TAPEX model will produce the result. The finetuned TAPEX model runs on data with a maximum of 5000 rows and 20 columns. A sample dataset of Shopify store sales is provided."

    article = "<p style='text-align: center'><a href='https://unscrambl.com/' target='_blank'>Unscrambl</a> | <a href='https://huggingface.co/microsoft/tapex-large-finetuned-wtq' target='_blank'>TAPEX Model</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=abaranovskij_tablequery' alt='visitor badge'></center>"

    iface = gr.Interface(fn=execute_query,
                         inputs=[gr.Textbox(label="Search query"),
                                 gr.File(label="CSV file")],
                         outputs=[gr.JSON(label="Result"),
                                  gr.Dataframe(label="All data")],
                         title="Table Question Answering (TAPEX)",
                         description=description,
                         article=article,
                         allow_flagging='never')
    # Use this config when running on Docker
    # iface.launch(server_name="0.0.0.0", server_port=7000)
    iface.launch(enable_queue=True)

if __name__ == "__main__":
    main()