ic_light / src /utils.py
1aurent's picture
add examples
cb6e7cb unverified
from enum import Enum, auto
import torch
from huggingface_hub import ( # pyright: ignore[reportMissingTypeStubs]
hf_hub_download, # pyright: ignore[reportUnknownVariableType]
)
from PIL import Image
from refiners.fluxion.utils import load_from_safetensors, tensor_to_image
from refiners.foundationals.clip import CLIPTextEncoderL
from refiners.foundationals.latent_diffusion import SD1UNet
from refiners.foundationals.latent_diffusion.stable_diffusion_1 import SD1Autoencoder
from refiners.foundationals.latent_diffusion.stable_diffusion_1.ic_light import ICLight
def load_ic_light(device: torch.device, dtype: torch.dtype) -> ICLight:
return ICLight(
patch_weights=load_from_safetensors(
path=hf_hub_download(
repo_id="refiners/sd15.ic_light.fc",
filename="model.safetensors",
revision="ea10b4403e97c786a98afdcbdf0e0fec794ea542",
),
),
unet=SD1UNet(in_channels=4, device=device, dtype=dtype).load_from_safetensors(
tensors_path=hf_hub_download(
repo_id="refiners/sd15.realistic_vision.v5_1.unet",
filename="model.safetensors",
revision="94f74be7adfd27bee330ea1071481c0254c29989",
)
),
clip_text_encoder=CLIPTextEncoderL(device=device, dtype=dtype).load_from_safetensors(
tensors_path=hf_hub_download(
repo_id="refiners/sd15.realistic_vision.v5_1.text_encoder",
filename="model.safetensors",
revision="7f6fa1e870c8f197d34488e14b89e63fb8d7fd6e",
)
),
lda=SD1Autoencoder(device=device, dtype=dtype).load_from_safetensors(
tensors_path=hf_hub_download(
repo_id="refiners/sd15.realistic_vision.v5_1.autoencoder",
filename="model.safetensors",
revision="99f089787a6e1a852a0992da1e286a19fcbbaa50",
)
),
device=device,
dtype=dtype,
)
def resize_modulo_8(
image: Image.Image,
size: int = 768,
resample: Image.Resampling | None = None,
on_short: bool = True,
) -> Image.Image:
"""Resize an image respecting the aspect ratio and ensuring the size is a multiple of 8.
The `on_short` parameter determines whether the resizing is based on the shortest side.
"""
assert size % 8 == 0, "Size must be a multiple of 8 because this is the latent compression size."
side_size = min(image.size) if on_short else max(image.size)
scale = size / (side_size * 8)
new_size = (int(image.width * scale) * 8, int(image.height * scale) * 8)
return image.resize(new_size, resample=resample or Image.Resampling.LANCZOS)
class LightingPreference(str, Enum):
LEFT = auto()
RIGHT = auto()
TOP = auto()
BOTTOM = auto()
NONE = auto()
def get_init_image(self, width: int, height: int, interval: tuple[float, float] = (0.0, 1.0)) -> Image.Image | None:
"""Generate an image with a linear gradient based on the lighting preference.
In the original code, interval is always (0., 1.) ; we added it as a parameter to make the function more
flexible and allow for less contrasted images with a smaller interval.
see https://github.com/lllyasviel/IC-Light/blob/7886874/gradio_demo.py#L242
"""
start, end = interval
match self:
case LightingPreference.LEFT:
tensor = torch.linspace(end, start, width).repeat(1, 1, height, 1)
case LightingPreference.RIGHT:
tensor = torch.linspace(start, end, width).repeat(1, 1, height, 1)
case LightingPreference.TOP:
tensor = torch.linspace(end, start, height).repeat(1, 1, width, 1).transpose(2, 3)
case LightingPreference.BOTTOM:
tensor = torch.linspace(start, end, height).repeat(1, 1, width, 1).transpose(2, 3)
case LightingPreference.NONE:
return None
return tensor_to_image(tensor).convert("RGB")
@classmethod
def from_str(cls, value: str):
match value.lower():
case "left":
return LightingPreference.LEFT
case "right":
return LightingPreference.RIGHT
case "top":
return LightingPreference.TOP
case "bottom":
return LightingPreference.BOTTOM
case "none":
return LightingPreference.NONE
case _:
raise ValueError(f"Invalid lighting preference: {value}")