from enum import Enum, auto import torch from huggingface_hub import ( # pyright: ignore[reportMissingTypeStubs] hf_hub_download, # pyright: ignore[reportUnknownVariableType] ) from PIL import Image from refiners.fluxion.utils import load_from_safetensors, tensor_to_image from refiners.foundationals.clip import CLIPTextEncoderL from refiners.foundationals.latent_diffusion import SD1UNet from refiners.foundationals.latent_diffusion.stable_diffusion_1 import SD1Autoencoder from refiners.foundationals.latent_diffusion.stable_diffusion_1.ic_light import ICLight def load_ic_light(device: torch.device, dtype: torch.dtype) -> ICLight: return ICLight( patch_weights=load_from_safetensors( path=hf_hub_download( repo_id="refiners/sd15.ic_light.fc", filename="model.safetensors", revision="ea10b4403e97c786a98afdcbdf0e0fec794ea542", ), ), unet=SD1UNet(in_channels=4, device=device, dtype=dtype).load_from_safetensors( tensors_path=hf_hub_download( repo_id="refiners/sd15.realistic_vision.v5_1.unet", filename="model.safetensors", revision="94f74be7adfd27bee330ea1071481c0254c29989", ) ), clip_text_encoder=CLIPTextEncoderL(device=device, dtype=dtype).load_from_safetensors( tensors_path=hf_hub_download( repo_id="refiners/sd15.realistic_vision.v5_1.text_encoder", filename="model.safetensors", revision="7f6fa1e870c8f197d34488e14b89e63fb8d7fd6e", ) ), lda=SD1Autoencoder(device=device, dtype=dtype).load_from_safetensors( tensors_path=hf_hub_download( repo_id="refiners/sd15.realistic_vision.v5_1.autoencoder", filename="model.safetensors", revision="99f089787a6e1a852a0992da1e286a19fcbbaa50", ) ), device=device, dtype=dtype, ) def resize_modulo_8( image: Image.Image, size: int = 768, resample: Image.Resampling | None = None, on_short: bool = True, ) -> Image.Image: """Resize an image respecting the aspect ratio and ensuring the size is a multiple of 8. The `on_short` parameter determines whether the resizing is based on the shortest side. """ assert size % 8 == 0, "Size must be a multiple of 8 because this is the latent compression size." side_size = min(image.size) if on_short else max(image.size) scale = size / (side_size * 8) new_size = (int(image.width * scale) * 8, int(image.height * scale) * 8) return image.resize(new_size, resample=resample or Image.Resampling.LANCZOS) class LightingPreference(str, Enum): LEFT = auto() RIGHT = auto() TOP = auto() BOTTOM = auto() NONE = auto() def get_init_image(self, width: int, height: int, interval: tuple[float, float] = (0.0, 1.0)) -> Image.Image | None: """Generate an image with a linear gradient based on the lighting preference. In the original code, interval is always (0., 1.) ; we added it as a parameter to make the function more flexible and allow for less contrasted images with a smaller interval. see https://github.com/lllyasviel/IC-Light/blob/7886874/gradio_demo.py#L242 """ start, end = interval match self: case LightingPreference.LEFT: tensor = torch.linspace(end, start, width).repeat(1, 1, height, 1) case LightingPreference.RIGHT: tensor = torch.linspace(start, end, width).repeat(1, 1, height, 1) case LightingPreference.TOP: tensor = torch.linspace(end, start, height).repeat(1, 1, width, 1).transpose(2, 3) case LightingPreference.BOTTOM: tensor = torch.linspace(start, end, height).repeat(1, 1, width, 1).transpose(2, 3) case LightingPreference.NONE: return None return tensor_to_image(tensor).convert("RGB") @classmethod def from_str(cls, value: str): match value.lower(): case "left": return LightingPreference.LEFT case "right": return LightingPreference.RIGHT case "top": return LightingPreference.TOP case "bottom": return LightingPreference.BOTTOM case "none": return LightingPreference.NONE case _: raise ValueError(f"Invalid lighting preference: {value}")