File size: 8,905 Bytes
09b15be
967ea4d
09b15be
f160eaf
967ea4d
09b15be
 
 
 
 
f160eaf
 
09b15be
 
967ea4d
 
09b15be
967ea4d
f160eaf
 
 
 
 
 
 
 
 
 
967ea4d
 
 
 
 
 
 
 
 
 
09b15be
 
 
 
 
967ea4d
09b15be
 
 
967ea4d
 
 
 
 
 
09b15be
 
 
 
967ea4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b15be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc174c
 
 
09b15be
 
 
 
 
 
f160eaf
09b15be
 
 
 
 
 
5f27df1
 
09b15be
 
 
 
 
 
 
 
 
 
967ea4d
 
 
09b15be
 
 
 
967ea4d
 
09b15be
 
 
 
 
 
967ea4d
09b15be
 
967ea4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b15be
4bedc91
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
import re
import torch
from PIL import Image
from transformers import AutoTokenizer, FuyuForCausalLM, FuyuImageProcessor, FuyuProcessor

model_id = "adept/fuyu-8b"
dtype = torch.bfloat16
device = "cuda"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype)
processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer)

CAPTION_PROMPT = "Generate a coco-style caption.\n"
DETAILED_CAPTION_PROMPT = "What is happening in this image?"

def resize_to_max(image, max_width=1920, max_height=1080):
    width, height = image.size
    if width <= max_width and height <= max_height:
        return image

    scale = min(max_width/width, max_height/height)
    width = int(width*scale)
    height = int(height*scale)

    return image.resize((width, height), Image.LANCZOS)

def pad_to_size(image, canvas_width=1920, canvas_height=1080):
    width, height = image.size
    if width >= canvas_width and height >= canvas_height:
        return image

    # Paste at (0, 0)
    canvas = Image.new("RGB", (canvas_width, canvas_height))
    canvas.paste(image)
    return canvas

def predict(image, prompt):
    # image = image.convert('RGB')
    model_inputs = processor(text=prompt, images=[image])
    model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}

    generation_output = model.generate(**model_inputs, max_new_tokens=50)
    prompt_len = model_inputs["input_ids"].shape[-1]
    return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True)

def caption(image, detailed_captioning):
    if detailed_captioning:
        caption_prompt = DETAILED_CAPTION_PROMPT
    else:
        caption_prompt = CAPTION_PROMPT
    return predict(image, caption_prompt).lstrip()

def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])

def scale_factor_to_fit(original_size, target_size=(1920, 1080)):
    width, height = original_size
    max_width, max_height = target_size
    if width <= max_width and height <= max_height:
        return 1.0
    return min(max_width/width, max_height/height)
    
def tokens_to_box(tokens, original_size):
    bbox_start = tokenizer.convert_tokens_to_ids("<0x00>")
    bbox_end = tokenizer.convert_tokens_to_ids("<0x01>")
    try:
        # Assumes a single box
        bbox_start_pos = (tokens == bbox_start).nonzero(as_tuple=True)[0].item()
        bbox_end_pos = (tokens == bbox_end).nonzero(as_tuple=True)[0].item()
        
        if bbox_end_pos != bbox_start_pos + 5:
            return tokens

        # Retrieve transformed coordinates from tokens
        coords = tokenizer.convert_ids_to_tokens(tokens[bbox_start_pos+1:bbox_end_pos])

        # Scale back to original image size and multiply by 2
        scale = scale_factor_to_fit(original_size)
        top, left, bottom, right = [2 * int(float(c)/scale) for c in coords]
        
        # Replace the IDs so they get detokenized right
        replacement = f" <box>{top}, {left}, {bottom}, {right}</box>"
        replacement = tokenizer.tokenize(replacement)[1:]
        replacement = tokenizer.convert_tokens_to_ids(replacement)
        replacement = torch.tensor(replacement).to(tokens)

        tokens = torch.cat([tokens[:bbox_start_pos], replacement, tokens[bbox_end_pos+1:]], 0)
        return tokens
    except:
        gr.Error("Can't convert tokens.")
        return tokens

def coords_from_response(response):
    # y1, x1, y2, x2
    pattern = r"<box>(\d+),\s*(\d+),\s*(\d+),\s*(\d+)</box>"

    match = re.search(pattern, response)
    if match:
        # Unpack and change order
        y1, x1, y2, x2 = [int(coord) for coord in match.groups()]
        return (x1, y1, x2, y2)
    else:
        gr.Error("The string is malformed or does not match the expected pattern.")
        
def localize(image, query):
    prompt = f"When presented with a box, perform OCR to extract text contained within it. If provided with text, generate the corresponding bounding box.\n{query}"

    # Downscale and/or pad to 1920x1080
    padded = resize_to_max(image)
    padded = pad_to_size(padded)

    model_inputs = processor(text=prompt, images=[padded])
    model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
    
    generation_output = model.generate(**model_inputs, max_new_tokens=40)
    prompt_len = model_inputs["input_ids"].shape[-1]
    tokens = generation_output[0][prompt_len:]
    tokens = tokens_to_box(tokens, image.size)
    decoded = tokenizer.decode(tokens, skip_special_tokens=True)
    coords = coords_from_response(decoded)
    return image, [(coords, f"Location of \"{query}\"")]


css = """
  #mkd {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

with gr.Blocks(css=css) as demo:
    gr.HTML(
        """
            <h1 id="title">Fuyu Multimodal Demo</h1>
            <h3><a href="https://hf.co/adept/fuyu-8b">Fuyu-8B</a> is a multimodal model that supports a variety of tasks combining text and image prompts.</h3>
            For example, you can use it for captioning by asking it to describe an image. You can also ask it questions about an image, a task known as Visual Question Answering, or VQA. This demo lets you explore captioning and VQA, with more tasks coming soon :)
            Learn more about the model in <a href="https://www.adept.ai/blog/fuyu-8b">our blog post</a>.
            <br>
          	<br>
            <strong>Note: This is a raw model release. We have not added further instruction-tuning, postprocessing or sampling strategies to control for undesirable outputs. The model may hallucinate, and you should expect to have to fine-tune the model for your use-case!</strong>
            <h3>Play with Fuyu-8B in this demo! πŸ’¬</h3>
        """
    )
    with gr.Tab("Visual Question Answering"):
        with gr.Row():
            with gr.Column():
                image_input = gr.Image(label="Upload your Image", type="pil")
                text_input = gr.Textbox(label="Ask a Question")
            vqa_output = gr.Textbox(label="Output")
            
        vqa_btn = gr.Button("Answer Visual Question")
        
        gr.Examples(
            [["assets/vqa_example_1.png", "How is this made?"], ["assets/vqa_example_2.png", "What is this flower and where is it's origin?"],
            ["assets/docvqa_example.png", "How many items are sold?"], ["assets/screen2words_ui_example.png", "What is this app about?"]],
            inputs = [image_input, text_input],
            outputs = [vqa_output],
            fn=predict,
            cache_examples=True,
            label='Click on any Examples below to get VQA results quickly πŸ‘‡'
            )

        
    with gr.Tab("Image Captioning"):
        with gr.Row():
            with gr.Column():
                captioning_input = gr.Image(label="Upload your Image", type="pil")
                detailed_captioning_checkbox = gr.Checkbox(label="Enable detailed captioning")
            captioning_output = gr.Textbox(label="Output")
        captioning_btn = gr.Button("Generate Caption")

        gr.Examples(
            [["assets/captioning_example_1.png", False], ["assets/captioning_example_2.png", True]],
            inputs = [captioning_input, detailed_captioning_checkbox],
            outputs = [captioning_output],
            fn=caption,
            cache_examples=True,
            label='Click on any Examples below to get captioning results quickly πŸ‘‡'
            )
        
    captioning_btn.click(fn=caption, inputs=[captioning_input, detailed_captioning_checkbox], outputs=captioning_output)
    vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output)

    with gr.Tab("Find Text in Screenshots"):
        with gr.Row():
            with gr.Column():
                localization_input = gr.Image(label="Upload your Image", type="pil")
                query_input = gr.Textbox(label="Text to find")
                localization_btn = gr.Button("Locate Text")
            with gr.Column():
                with gr.Row(height=800):
                    localization_output = gr.AnnotatedImage(label="Text Position")

        gr.Examples(
            [["assets/localization_example_1.jpeg", "Share your repair"],
             ["assets/screen2words_ui_example.png", "statistics"]],
            inputs = [localization_input, query_input],
            outputs = [localization_output],
            fn=localize,
            cache_examples=True,
            label='Click on any Examples below to get localization results quickly πŸ‘‡'
            )
    
    localization_btn.click(fn=localize, inputs=[localization_input, query_input], outputs=localization_output)   
    
demo.launch(share = True)