|
from transformers import T5Tokenizer, FlaxT5ForConditionalGeneration |
|
|
|
MODEL_NAME_OR_PATH = "t5-base" |
|
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME_OR_PATH) |
|
model = FlaxT5ForConditionalGeneration.from_pretrained(MODEL_NAME_OR_PATH) |
|
|
|
prefix = "items: " |
|
generation_kwargs = { |
|
"max_length": 512, |
|
"min_length": 64, |
|
"no_repeat_ngram_size": 3, |
|
"do_sample": True, |
|
"top_k": 60, |
|
"top_p": 0.95, |
|
"num_return_sequences": 1 |
|
} |
|
|
|
def skip_special_tokens(text, special_tokens): |
|
for token in special_tokens: |
|
text = text.replace(token, "") |
|
return text |
|
|
|
def target_postprocessing(texts, special_tokens): |
|
if not isinstance(texts, list): |
|
texts = [texts] |
|
new_texts = [] |
|
for text in texts: |
|
text = skip_special_tokens(text, special_tokens) |
|
new_texts.append(text) |
|
return new_texts |
|
|
|
def generate_recipe(items): |
|
inputs = [prefix + items] |
|
inputs = tokenizer( |
|
inputs, |
|
max_length=256, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="jax" |
|
) |
|
input_ids = inputs.input_ids |
|
attention_mask = inputs.attention_mask |
|
|
|
output_ids = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**generation_kwargs |
|
) |
|
generated_recipe = tokenizer.batch_decode(output_ids, skip_special_tokens=False) |
|
generated_recipe = target_postprocessing(generated_recipe, tokenizer.all_special_tokens) |
|
return generated_recipe[0] |
|
|
|
|
|
input_items = "apple, cucumber" |
|
generated_recipe = generate_recipe(input_items) |
|
print(generated_recipe) |
|
|