Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
|
|
1 |
from transformers import T5Tokenizer, FlaxT5ForConditionalGeneration
|
|
|
2 |
|
3 |
MODEL_NAME_OR_PATH = "t5-base"
|
4 |
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME_OR_PATH)
|
@@ -46,11 +48,21 @@ def generate_recipe(items):
|
|
46 |
attention_mask=attention_mask,
|
47 |
**generation_kwargs
|
48 |
)
|
|
|
|
|
|
|
|
|
49 |
generated_recipe = tokenizer.batch_decode(output_ids, skip_special_tokens=False)
|
50 |
generated_recipe = target_postprocessing(generated_recipe, tokenizer.all_special_tokens)
|
51 |
return generated_recipe[0]
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
from transformers import T5Tokenizer, FlaxT5ForConditionalGeneration
|
3 |
+
import numpy as np
|
4 |
|
5 |
MODEL_NAME_OR_PATH = "t5-base"
|
6 |
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME_OR_PATH)
|
|
|
48 |
attention_mask=attention_mask,
|
49 |
**generation_kwargs
|
50 |
)
|
51 |
+
|
52 |
+
# Convert output IDs to numpy array
|
53 |
+
output_ids = np.array(output_ids)
|
54 |
+
|
55 |
generated_recipe = tokenizer.batch_decode(output_ids, skip_special_tokens=False)
|
56 |
generated_recipe = target_postprocessing(generated_recipe, tokenizer.all_special_tokens)
|
57 |
return generated_recipe[0]
|
58 |
|
59 |
+
def main():
|
60 |
+
st.title("Recipe Generation")
|
61 |
+
|
62 |
+
items = st.text_input("Enter food items separated by comma (e.g., apple, cucumber):")
|
63 |
+
if st.button("Generate Recipe"):
|
64 |
+
generated_recipe = generate_recipe(items)
|
65 |
+
st.write(generated_recipe)
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
main()
|