File size: 3,015 Bytes
291a269
43ea451
 
 
 
 
 
291a269
 
43ea451
 
 
 
c0930aa
43ea451
 
c0930aa
43ea451
 
c0930aa
 
43ea451
 
c0930aa
43ea451
c0930aa
43ea451
 
 
c0930aa
43ea451
c0930aa
43ea451
 
 
 
c0930aa
43ea451
 
 
 
 
c0930aa
43ea451
 
 
 
 
 
c0930aa
43ea451
 
 
c0930aa
43ea451
c0930aa
43ea451
 
c0930aa
43ea451
c0930aa
43ea451
c0930aa
43ea451
 
c0930aa
43ea451
 
c0930aa
43ea451
 
 
 
 
 
 
 
 
 
 
c0930aa
43ea451
c0930aa
43ea451
c0930aa
 
291a269
 
 
 
4e2d045
291a269
 
c0930aa
291a269
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget 
import gradio as gr
from huggingface_hub import snapshot_download
import os

# Install TensorFlow within the Hugging Face environment
os.system('pip install tensorflow')

# Now you can import TensorFlow
import tensorflow as tf


PATH_TO_LABELS = 'data/label_map.pbtxt'   
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)

def pil_image_as_numpy_array(pilimg):

    img_array = tf.keras.utils.img_to_array(pilimg)
    img_array = np.expand_dims(img_array, axis=0)
    return img_array
    
def load_image_into_numpy_array(path):
                                    
    image = None
    image_data = tf.io.gfile.GFile(path, 'rb').read()
    image = Image.open(BytesIO(image_data))
    return pil_image_as_numpy_array(image)            

def load_model():
    download_dir = snapshot_download(REPO_ID)
    saved_model_dir = os.path.join(download_dir, "saved_model")
    detection_model = tf.saved_model.load(saved_model_dir)
    return detection_model

def load_model2():
    wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz")
    tarfile.open("balloon_model.tar.gz").extractall()
    model_dir = 'saved_model'    
    detection_model = tf.saved_model.load(str(model_dir))
    return detection_model    

# samples_folder = 'test_samples
# image_path = 'test_samples/sample_balloon.jpeg
# 

def predict(pilimg):

    image_np = pil_image_as_numpy_array(pilimg)
    return predict2(image_np)

def predict2(image_np):

    results = detection_model(image_np)

    # different object detection models have additional results
    result = {key:value.numpy() for key,value in results.items()}
    
    label_id_offset = 0
    image_np_with_detections = image_np.copy()

    viz_utils.visualize_boxes_and_labels_on_image_array(
        image_np_with_detections[0],
        result['detection_boxes'][0],
        (result['detection_classes'][0] + label_id_offset).astype(int),
        result['detection_scores'][0],
        category_index,
        use_normalized_coordinates=True,
        max_boxes_to_draw=200,
        min_score_thresh=.60,
        agnostic_mode=False,
        line_thickness=2)

    result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
    
    return result_pil_img


REPO_ID = "Louisw3399/burgerorfriesdetector"
detection_model = load_model()
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)

# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')

gr.Interface(fn=predict,
             inputs=gr.Image(type="pil"),
             outputs=gr.Image(type="pil")
             ).launch(share=True)