Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,66 +8,66 @@ from keras.models import load_model
|
|
8 |
|
9 |
# Load the pre-trained models and define parameters
|
10 |
detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml'
|
11 |
-
emotion_model_path = '
|
12 |
face_detection = cv2.CascadeClassifier(detection_model_path)
|
13 |
emotion_classifier = load_model(emotion_model_path, compile=False)
|
14 |
EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown']
|
15 |
|
16 |
-
# Function to predict emotions from a frame
|
17 |
-
def predict(frame_or_path):
|
18 |
-
if isinstance(frame_or_path, np.ndarray): # If input is a webcam frame
|
19 |
-
frame = imutils.resize(frame_or_path, width=300)
|
20 |
-
else: # If input is a file path
|
21 |
-
frame = cv2.imread(frame_or_path)
|
22 |
-
if frame is None:
|
23 |
-
return None, "Error: Unable to read image or video."
|
24 |
-
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
25 |
-
faces = face_detection.detectMultiScale(gray, scaleFactor=1.1,
|
26 |
-
minNeighbors=5, minSize=(30, 30),
|
27 |
-
flags=cv2.CASCADE_SCALE_IMAGE)
|
28 |
-
if len(faces) == 0:
|
29 |
-
return frame, "No face detected."
|
30 |
-
(fX, fY, fW, fH) = faces[0]
|
31 |
-
roi = gray[fY:fY + fH, fX:fX + fW]
|
32 |
-
roi = cv2.resize(roi, (48, 48))
|
33 |
-
roi = roi.astype("float") / 255.0
|
34 |
-
roi = img_to_array(roi)
|
35 |
-
roi = np.expand_dims(roi, axis=0)
|
36 |
-
preds = emotion_classifier.predict(roi)[0]
|
37 |
-
label = EMOTIONS[preds.argmax()]
|
38 |
-
cv2.putText(frame, label, (fX, fY - 10),
|
39 |
-
cv2.FONT_HERSHEY_DUPLEX, 1, (238, 164, 64), 1)
|
40 |
-
cv2.rectangle(frame, (fX, fY), (fX + fW, fY + fH),
|
41 |
-
(238, 164, 64), 2)
|
42 |
-
return frame, {emotion: float(prob) for emotion, prob in zip(EMOTIONS, preds)}
|
43 |
|
44 |
-
#
|
|
|
45 |
|
46 |
-
|
47 |
-
gr.components.Image(sources="webcam", label="Your face"),
|
48 |
-
gr.components.File(label="Upload Image or Video")
|
49 |
-
]
|
50 |
-
output = [
|
51 |
-
gr.components.Image(label="Predicted Emotion"),
|
52 |
-
gr.components.Label(num_top_classes=2, label="Top 2 Probabilities")
|
53 |
-
]
|
54 |
|
55 |
-
|
56 |
-
title = "Facial Emotion Recognition"
|
57 |
-
description = "How well can this model predict your emotions? Take a picture with your webcam, or upload an image, and it will guess if you are happy, sad, angry, disgusted, scared, surprised, or neutral."
|
58 |
-
thumbnail = "https://raw.githubusercontent.com/gradio-app/hub-emotion-recognition/master/thumbnail.png"
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
|
8 |
|
9 |
# Load the pre-trained models and define parameters
|
10 |
detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml'
|
11 |
+
emotion_model_path = 'model4_0.83/model4_entire_model.h5'
|
12 |
face_detection = cv2.CascadeClassifier(detection_model_path)
|
13 |
emotion_classifier = load_model(emotion_model_path, compile=False)
|
14 |
EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown']
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# face_detector_mtcnn = MTCNN()
|
18 |
+
classifier = load_model(emotion_model_path)
|
19 |
|
20 |
+
def predict_emotion(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
faces = face_detection(image)
|
|
|
|
|
|
|
23 |
|
24 |
+
for face in faces:
|
25 |
+
x,y,w,h = face['box']
|
26 |
+
|
27 |
+
roi = image[y:y+h,x:x+w]
|
28 |
+
|
29 |
+
# Converting the region of interest to grayscale, and resize
|
30 |
+
roi_gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
|
31 |
+
roi_gray = cv2.resize(roi_gray,(48,48),interpolation=cv2.INTER_AREA)
|
32 |
+
|
33 |
+
img = roi_gray.astype('float')/255.0
|
34 |
+
img = img_to_array(img)
|
35 |
+
img = np.expand_dims(img,axis=0)
|
36 |
+
|
37 |
+
prediction = classifier.predict(img)[0]
|
38 |
+
#top_indices = np.argsort(prediction)[-2:]
|
39 |
+
#top_emotion = top_indices[1]
|
40 |
+
#second_emotion = top_indices[0]
|
41 |
+
#label = emotions[top_emotion]
|
42 |
+
confidences = {emotions[i]: float(prediction[i]) for i in range(len(emotions))}
|
43 |
+
|
44 |
+
return confidences
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
demo = gr.Interface(
|
49 |
+
fn = predict_emotion,
|
50 |
+
inputs = gr.Image(type="numpy"),
|
51 |
+
outputs = gr.Label(num_top_classes=9),
|
52 |
+
#flagging_options=["blurry", "incorrect", "other"],
|
53 |
+
examples = [
|
54 |
+
os.path.join(os.path.dirname(__file__), "images/Image_1.jpg"),
|
55 |
+
os.path.join(os.path.dirname(__file__), "images/Image_2.jpg"),
|
56 |
+
os.path.join(os.path.dirname(__file__), "images/Image_3.jpg"),
|
57 |
+
os.path.join(os.path.dirname(__file__), "images/Image_4.jpg"),
|
58 |
+
os.path.join(os.path.dirname(__file__), "images/Image_5.jpg"),
|
59 |
+
os.path.join(os.path.dirname(__file__), "images/Image_6.jpg"),
|
60 |
+
os.path.join(os.path.dirname(__file__), "images/Image_7.jpg"),
|
61 |
+
os.path.join(os.path.dirname(__file__), "images/Image_8.jpg"),
|
62 |
+
os.path.join(os.path.dirname(__file__), "images/Image_9.jpg"),
|
63 |
+
os.path.join(os.path.dirname(__file__), "images/Image_10.jpg"),
|
64 |
+
|
65 |
+
],
|
66 |
+
title = "Whatchu feeling?",
|
67 |
+
theme = "shivi/calm_seafoam"
|
68 |
+
)
|
69 |
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
demo.launch()
|