Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from keras.preprocessing.image import img_to_array
|
4 |
+
import imutils
|
5 |
+
import cv2
|
6 |
+
from keras.models import load_model
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# parameters for loading data and images
|
10 |
+
detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml'
|
11 |
+
emotion_model_path = 'models/model2_entire_model.h5'
|
12 |
+
|
13 |
+
# hyper-parameters for bounding boxes shape
|
14 |
+
# loading models
|
15 |
+
face_detection = cv2.CascadeClassifier(detection_model_path)
|
16 |
+
emotion_classifier = load_model(emotion_model_path, compile=False)
|
17 |
+
EMOTIONS = ['neutral','happiness','surprise','sadness','anger','disgust','fear','contempt','unknown']
|
18 |
+
|
19 |
+
|
20 |
+
def predict(frame):
|
21 |
+
|
22 |
+
frame = imutils.resize(frame, width=300)
|
23 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
24 |
+
faces = face_detection.detectMultiScale(gray, scaleFactor=1.1,
|
25 |
+
minNeighbors=5, minSize=(30, 30),
|
26 |
+
flags=cv2.CASCADE_SCALE_IMAGE)
|
27 |
+
|
28 |
+
frameClone = frame.copy()
|
29 |
+
if len(faces) > 0:
|
30 |
+
faces = sorted(faces, reverse=True,
|
31 |
+
key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0]
|
32 |
+
(fX, fY, fW, fH) = faces
|
33 |
+
# Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare
|
34 |
+
# the ROI for classification via the CNN
|
35 |
+
roi = gray[fY:fY + fH, fX:fX + fW]
|
36 |
+
roi = cv2.resize(roi, (48, 48))
|
37 |
+
roi = roi.astype("float") / 255.0
|
38 |
+
roi = img_to_array(roi)
|
39 |
+
roi = np.expand_dims(roi, axis=0)
|
40 |
+
|
41 |
+
preds = emotion_classifier.predict(roi)[0]
|
42 |
+
label = EMOTIONS[preds.argmax()]
|
43 |
+
else:
|
44 |
+
return frameClone, "Can't find your face"
|
45 |
+
|
46 |
+
probs = {}
|
47 |
+
cv2.putText(frameClone, label, (fX, fY - 10),
|
48 |
+
cv2.FONT_HERSHEY_DUPLEX, 1, (238, 164, 64), 1)
|
49 |
+
cv2.rectangle(frameClone, (fX, fY), (fX + fW, fY + fH),
|
50 |
+
(238, 164, 64), 2)
|
51 |
+
|
52 |
+
for (i, (emotion, prob)) in enumerate(zip(EMOTIONS, preds)):
|
53 |
+
probs[emotion] = float(prob)
|
54 |
+
|
55 |
+
return frameClone, probs
|
56 |
+
|
57 |
+
|
58 |
+
inp = gr.inputs.Image(source="webcam", label="Your face")
|
59 |
+
out = [
|
60 |
+
gr.outputs.Image(label="Predicted Emotion"),
|
61 |
+
gr.outputs.Label(num_top_classes=2, label="Top 2 Probabilities")
|
62 |
+
]
|
63 |
+
title = "Facial Emotion Recognition"
|
64 |
+
description = "How well can this model predict your emotions? Take a picture with your webcam, and it will guess if" \
|
65 |
+
" you are: happy, sad, angry, disgusted, scared, surprised, or neutral."
|
66 |
+
# thumbnail = "https://raw.githubusercontent.com/gradio-app/hub-emotion-recognition/master/thumbnail.png"
|
67 |
+
|
68 |
+
gr.Interface(predict, inp, out, capture_session=True, title=title, thumbnail=thumbnail,
|
69 |
+
description=description).launch(inbrowser=True)
|