import gradio as gr import os import cv2 import numpy as np import imutils from keras.preprocessing.image import img_to_array from keras.models import load_model # Load the pre-trained models and define parameters detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml' emotion_model_path = 'model4_0.83/model4_entire_model.h5' face_detection = cv2.CascadeClassifier(detection_model_path) emotion_classifier = load_model(emotion_model_path, compile=False) EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown'] # face_detector_mtcnn = MTCNN() classifier = load_model(emotion_model_path) def predict_emotion(image): faces = face_detection(image) for face in faces: x,y,w,h = face['box'] roi = image[y:y+h,x:x+w] # Converting the region of interest to grayscale, and resize roi_gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) roi_gray = cv2.resize(roi_gray,(48,48),interpolation=cv2.INTER_AREA) img = roi_gray.astype('float')/255.0 img = img_to_array(img) img = np.expand_dims(img,axis=0) prediction = classifier.predict(img)[0] #top_indices = np.argsort(prediction)[-2:] #top_emotion = top_indices[1] #second_emotion = top_indices[0] #label = emotions[top_emotion] confidences = {emotions[i]: float(prediction[i]) for i in range(len(emotions))} return confidences demo = gr.Interface( fn = predict_emotion, inputs = gr.Image(type="numpy"), outputs = gr.Label(num_top_classes=9), #flagging_options=["blurry", "incorrect", "other"], examples = [ os.path.join(os.path.dirname(__file__), "images/Image_1.jpg"), os.path.join(os.path.dirname(__file__), "images/Image_2.jpg"), os.path.join(os.path.dirname(__file__), "images/Image_3.jpg"), os.path.join(os.path.dirname(__file__), "images/Image_4.jpg"), os.path.join(os.path.dirname(__file__), "images/Image_5.jpg"), os.path.join(os.path.dirname(__file__), "images/Image_6.jpg"), os.path.join(os.path.dirname(__file__), "images/Image_7.jpg"), os.path.join(os.path.dirname(__file__), "images/Image_8.jpg"), os.path.join(os.path.dirname(__file__), "images/Image_9.jpg"), os.path.join(os.path.dirname(__file__), "images/Image_10.jpg"), ], title = "Whatchu feeling?", theme = "shivi/calm_seafoam" ) if __name__ == "__main__": demo.launch()