# import gradio as gr # import os # import cv2 # import numpy as np # import imutils # from keras.preprocessing.image import img_to_array # from keras.models import load_model # # Load the pre-trained models and define parameters # detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml' # emotion_model_path = 'model4_0.83/model4_entire_model.h5' # face_detection = cv2.CascadeClassifier(detection_model_path) # emotion_classifier = load_model(emotion_model_path, compile=False) # EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown'] # # face_detector_mtcnn = MTCNN() # classifier = load_model(emotion_model_path) # def predict_emotion(frame): # frame = imutils.resize(frame, width=300) # gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) # faces = face_detection.detectMultiScale(gray, scaleFactor=1.1, # minNeighbors=5, minSize=(30, 30), # flags=cv2.CASCADE_SCALE_IMAGE) # for (fX, fY, fW, fH) in faces: # # Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare # # the ROI for classification via the CNN # roi = gray[fY:fY + fH, fX:fX + fW] # roi = cv2.resize(roi, (48, 48)) # roi = roi.astype("float") / 255.0 # roi = img_to_array(roi) # roi = np.expand_dims(roi, axis=0) # preds = emotion_classifier.predict(roi)[0] # label = EMOTIONS[preds.argmax()] # # Overlay a box over the detected face # cv2.putText(frame, label, (fX, fY - 10), # cv2.FONT_HERSHEY_DUPLEX, 0.5, (238, 164, 64), 1, cv2.LINE_AA) # cv2.rectangle(frame, (fX, fY), (fX + fW, fY + fH), # (238, 164, 64), 2) # return frame # demo = gr.Interface( # fn = predict_emotion, # inputs = gr.Image(type="numpy"), # outputs = gr.Image(), # # gr.components.Image(label="Predicted Emotion"), # # gr.components.Label(num_top_classes=2, label="Top 2 Probabilities") # #flagging_options=["blurry", "incorrect", "other"], # examples = [ # os.path.join(os.path.dirname(__file__), "images/chandler.jpeg"), # os.path.join(os.path.dirname(__file__), "images/janice.jpeg"), # os.path.join(os.path.dirname(__file__), "images/joey.jpeg"), # os.path.join(os.path.dirname(__file__), "images/phoebe.jpeg"), # os.path.join(os.path.dirname(__file__), "images/rachel_monica.jpeg"), # os.path.join(os.path.dirname(__file__), "images/ross.jpeg"), # os.path.join(os.path.dirname(__file__), "images/gunther.jpeg") # ], # title = "How are you feeling?", # theme = "shivi/calm_seafoam" # ) # if __name__ == "__main__": # demo.launch() ###################################################################################################################################################### import gradio as gr import os import cv2 import numpy as np import imutils from keras.preprocessing.image import img_to_array from keras.models import load_model # Load the pre-trained models and define parameters detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml' emotion_model_path = 'model4_0.83/model4_entire_model.h5' face_detection = cv2.CascadeClassifier(detection_model_path) emotion_classifier = load_model(emotion_model_path, compile=False) EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown'] def predict_emotion(frame): if isinstance(frame, np.ndarray): # Image input frame = predict_image(frame) else: # Video frame input frame = predict_video_frame(frame.read()) # Convert NamedString to bytes return frame def predict_image(frame): frame = imutils.resize(frame, width=300) gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) faces = face_detection.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE) for (fX, fY, fW, fH) in faces: # Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare # the ROI for classification via the CNN roi = gray[fY:fY + fH, fX:fX + fW] roi = cv2.resize(roi, (48, 48)) roi = roi.astype("float") / 255.0 roi = img_to_array(roi) roi = np.expand_dims(roi, axis=0) preds = emotion_classifier.predict(roi)[0] label = EMOTIONS[preds.argmax()] # Overlay a box over the detected face cv2.putText(frame, label, (fX, fY - 10), cv2.FONT_HERSHEY_DUPLEX, 0.5, (238, 164, 64), 1, cv2.LINE_AA) cv2.rectangle(frame, (fX, fY), (fX + fW, fY + fH), (238, 164, 64), 2) return frame def predict_video_frame(frame): return predict_image(frame) demo = gr.Interface( fn = predict_emotion, inputs = [gr.inputs.Image(type="numpy"), gr.inputs.Video()], # Corrected input components outputs = gr.outputs.Image(), examples = [ [os.path.join(os.path.dirname(__file__), "images/chandler.jpeg")], [os.path.join(os.path.dirname(__file__), "images/janice.jpeg")], [os.path.join(os.path.dirname(__file__), "images/joey.jpeg")], [os.path.join(os.path.dirname(__file__), "images/phoebe.jpeg")], [os.path.join(os.path.dirname(__file__), "images/rachel_monica.jpeg")], [os.path.join(os.path.dirname(__file__), "images/ross.jpeg")], [os.path.join(os.path.dirname(__file__), "images/gunther.jpeg")], [open(os.path.join(os.path.dirname(__file__), "images/joey_shocked.mp4"), "rb")] # Open file in binary mode ], title = "How are you feeling?", theme = "shivi/calm_seafoam" ) if __name__ == "__main__": demo.launch()