import gradio as gr import os import cv2 import numpy as np import imutils from keras.preprocessing.image import img_to_array from keras.models import load_model # Load the pre-trained models and define parameters detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml' emotion_model_path = 'model4_0.83/model4_entire_model.h5' face_detection = cv2.CascadeClassifier(detection_model_path) emotion_classifier = load_model(emotion_model_path, compile=False) EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown'] # face_detector_mtcnn = MTCNN() classifier = load_model(emotion_model_path) def predict_emotion(frame): frame = imutils.resize(frame, width=300) gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) faces = face_detection.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE) frame_clone = frame.copy() if len(faces) > 0: faces = sorted(faces, reverse=True, key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0] (fX, fY, fW, fH) = faces # Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare # the ROI for classification via the CNN roi = gray[fY:fY + fH, fX:fX + fW] roi = cv2.resize(roi, (48, 48)) roi = roi.astype("float") / 255.0 roi = img_to_array(roi) roi = np.expand_dims(roi, axis=0) preds = emotion_classifier.predict(roi)[0] label = EMOTIONS[preds.argmax()] # Overlay a box over the detected face cv2.putText(frame_clone, label, (fX, fY - 10), cv2.FONT_HERSHEY_DUPLEX, 1, (238, 164, 64), 1) cv2.rectangle(frame_clone, (fX, fY), (fX + fW, fY + fH), (238, 164, 64), 2) else: label = "Can't find your face" return frame_clone demo = gr.Interface( fn = predict_emotion, inputs = gr.Image(type="numpy"), outputs = gr.Label(num_top_classes=9), #flagging_options=["blurry", "incorrect", "other"], examples = [ os.path.join(os.path.dirname(__file__), "images/chandler.jpeg"), os.path.join(os.path.dirname(__file__), "images/janice.jpeg"), os.path.join(os.path.dirname(__file__), "images/joey.jpeg"), os.path.join(os.path.dirname(__file__), "images/phoebe.jpeg"), os.path.join(os.path.dirname(__file__), "images/rachel_monica.jpeg"), os.path.join(os.path.dirname(__file__), "images/ross.jpeg"), os.path.join(os.path.dirname(__file__), "images/gunther.jpeg") ], title = "Whatchu feeling?", theme = "shivi/calm_seafoam" ) if __name__ == "__main__": demo.launch()