import gradio as gr import os import cv2 import numpy as np import imutils from keras.preprocessing.image import img_to_array from keras.models import load_model # Load the pre-trained models and define parameters detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml' emotion_model_path = 'model_2_aug_nocall_BEST/model_2_aug_nocall_entire_model.h5' face_detection = cv2.CascadeClassifier(detection_model_path) emotion_classifier = load_model(emotion_model_path, compile=False) EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown'] # Function to predict emotions from a frame def predict(frame_or_path): if isinstance(frame_or_path, np.ndarray): # If input is a webcam frame frame = imutils.resize(frame_or_path, width=300) else: # If input is a file path frame = cv2.imread(frame_or_path) if frame is None: return None, "Error: Unable to read image or video." gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_detection.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE) if len(faces) == 0: return frame, "No face detected." (fX, fY, fW, fH) = faces[0] roi = gray[fY:fY + fH, fX:fX + fW] roi = cv2.resize(roi, (48, 48)) roi = roi.astype("float") / 255.0 roi = img_to_array(roi) roi = np.expand_dims(roi, axis=0) preds = emotion_classifier.predict(roi)[0] label = EMOTIONS[preds.argmax()] cv2.putText(frame, label, (fX, fY - 10), cv2.FONT_HERSHEY_DUPLEX, 1, (238, 164, 64), 1) cv2.rectangle(frame, (fX, fY), (fX + fW, fY + fH), (238, 164, 64), 2) return frame, {emotion: float(prob) for emotion, prob in zip(EMOTIONS, preds)} # Define input and output components for Gradio image_input = gr.components.Image(sources=["webcam", "upload"], label="Your face") image_output = gr.components.Image(label="Predicted Emotion") label_output = gr.components.Label(num_top_classes=2, label="Top 2 Probabilities") # Launch the Gradio interface title = "Facial Emotion Recognition" description = "How well can this model predict your emotions? Take a picture with your webcam, or upload an image, and it will guess if you are happy, sad, angry, disgusted, scared, surprised, or neutral." thumbnail = "https://raw.githubusercontent.com/gradio-app/hub-emotion-recognition/master/thumbnail.png" gr.Interface(fn=predict, inputs=image_input, outputs=[image_output, label_output], title=title, description=description, thumbnail=thumbnail).launch()