Kunhak Lee
USE CPU
820b693
raw
history blame contribute delete
946 Bytes
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import numpy as np
multi_view_diffusion_pipeline = DiffusionPipeline.from_pretrained(
"2gnak/multi-view-diffusion-demo",
custom_pipeline="dylanebert/multi-view-diffusion",
torch_dtype=torch.float16,
trust_remote_code=True,
).to("cpu")
def run(image):
image = np.array(image, dtype=np.float32) / 255.0
images = multi_view_diffusion_pipeline("", image, guidance_scale=5, num_inference_steps=30, elevation=0)
images = [Image.fromarray((img * 255).astype("uint8")) for img in images]
width, height = images[0].size
grid_img = Image.new("RGB", (2 * width, 2 * height))
grid_img.paste(images[0], (0, 0))
grid_img.paste(images[1], (width, 0))
grid_img.paste(images[2], (0, height))
grid_img.paste(images[3], (width, height))
return grid_img
demo = gr.Interface(fn=run, inputs="image", outputs="image")
demo.launch()