|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
from diffusers import DiffusionPipeline |
|
import numpy as np |
|
|
|
multi_view_diffusion_pipeline = DiffusionPipeline.from_pretrained( |
|
"2gnak/multi-view-diffusion-demo", |
|
custom_pipeline="dylanebert/multi-view-diffusion", |
|
torch_dtype=torch.float16, |
|
trust_remote_code=True, |
|
).to("cpu") |
|
|
|
def run(image): |
|
image = np.array(image, dtype=np.float32) / 255.0 |
|
images = multi_view_diffusion_pipeline("", image, guidance_scale=5, num_inference_steps=30, elevation=0) |
|
|
|
images = [Image.fromarray((img * 255).astype("uint8")) for img in images] |
|
|
|
width, height = images[0].size |
|
grid_img = Image.new("RGB", (2 * width, 2 * height)) |
|
|
|
grid_img.paste(images[0], (0, 0)) |
|
grid_img.paste(images[1], (width, 0)) |
|
grid_img.paste(images[2], (0, height)) |
|
grid_img.paste(images[3], (width, height)) |
|
|
|
return grid_img |
|
|
|
demo = gr.Interface(fn=run, inputs="image", outputs="image") |
|
demo.launch() |