Spaces:
Runtime error
Runtime error
ziggycross
commited on
Commit
•
7ad6c98
1
Parent(s):
80e8771
Created basic web app for data cleaning.
Browse files- app.py +28 -0
- modules.py +70 -0
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import modules
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
st.markdown(
|
6 |
+
"""
|
7 |
+
# 2hack2furious anonymiser
|
8 |
+
|
9 |
+
upload a dataset and get a cleaned dataset back.
|
10 |
+
"""
|
11 |
+
)
|
12 |
+
|
13 |
+
uploaded_file = st.file_uploader(f"Upload dataset:", type=modules.SUPPORTED_TYPES)
|
14 |
+
|
15 |
+
df, (filename, extension), result = modules.load_file(uploaded_file)
|
16 |
+
st.text(result)
|
17 |
+
|
18 |
+
st.title("Before:")
|
19 |
+
st.dataframe(df)
|
20 |
+
|
21 |
+
st.title("After:")
|
22 |
+
df = modules.data_cleaner(df)
|
23 |
+
st.dataframe(df)
|
24 |
+
|
25 |
+
st.download_button("Download cleaned data", modules.create_file(df, extension), file_name=filename)
|
26 |
+
|
27 |
+
st.markdown("---")
|
28 |
+
st.text("Created by team #2hack2furious for the hackthethreat2023")
|
modules.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
SUPPORTED_TYPES = [".csv", ".json", ".xlsx"]
|
4 |
+
|
5 |
+
def load_file(file):
|
6 |
+
"""
|
7 |
+
Takes a file given by Streamlit and loads into a DataFrame.
|
8 |
+
Returns a DataFrame, metadata, and result string.
|
9 |
+
|
10 |
+
@param file: File uploaded into streamlit.
|
11 |
+
@rtype: tuple
|
12 |
+
@return: A tuple of format (pd.DataFrame, (str, str), str).
|
13 |
+
"""
|
14 |
+
df = pd.DataFrame()
|
15 |
+
|
16 |
+
if file is None: return df, ""
|
17 |
+
|
18 |
+
filename = file.name
|
19 |
+
extension = filename.split(".")[-1]
|
20 |
+
metadata = (filename, extension)
|
21 |
+
|
22 |
+
try:
|
23 |
+
match extension:
|
24 |
+
case "csv":
|
25 |
+
df = pd.read_csv(file)
|
26 |
+
case "json":
|
27 |
+
df = pd.read_json(file)
|
28 |
+
case "xlsx":
|
29 |
+
df = pd.read_excel(file)
|
30 |
+
case _:
|
31 |
+
return df, metadata, f"Error: Invalid extension '{extension}'"
|
32 |
+
rows, columns = df.shape
|
33 |
+
return df, metadata, f"File '{filename}' loaded successfully.\nFound {rows} rows, {columns} columns."
|
34 |
+
except Exception as error:
|
35 |
+
return df, metadata, f"Error: Unable to read file '{filename}' ({type(error)}: {error})"
|
36 |
+
|
37 |
+
def create_file(df, extension):
|
38 |
+
"""
|
39 |
+
Prepares a dataframe from streamlit for download.
|
40 |
+
|
41 |
+
@type df: pd.DataFrame
|
42 |
+
@param df: A DataFrame to package into a file.
|
43 |
+
@type extension: pd.DataFrame
|
44 |
+
@param extension: The desired filetype.
|
45 |
+
@return: A file container ready for download.
|
46 |
+
"""
|
47 |
+
match extension:
|
48 |
+
case "csv":
|
49 |
+
return df.to_csv()
|
50 |
+
case "json":
|
51 |
+
return df.to_json()
|
52 |
+
case "xlsx":
|
53 |
+
return df.to_excel()
|
54 |
+
|
55 |
+
def data_cleaner(df, drop_missing=False, remove_duplicates=True):
|
56 |
+
"""
|
57 |
+
Takes a DataFrame and removes empty and duplicate entries.
|
58 |
+
|
59 |
+
@type df: pd.DataFrame
|
60 |
+
@param df: A DataFrame of uncleaned data.
|
61 |
+
@type drop_missing: bool
|
62 |
+
@param drop_missing: Determines if rows with any missing values are dropped ("any"), or just empty rows ("all").
|
63 |
+
@type remove_duplicates: bool
|
64 |
+
@param remove_duplicates: Determines if duplicate rows are removed.
|
65 |
+
@rtype: pd.DataFrame
|
66 |
+
@return: A DataFrame with requested cleaning applied
|
67 |
+
"""
|
68 |
+
df = df.dropna(how="any" if drop_missing else "all")
|
69 |
+
if remove_duplicates: df = df.drop_duplicates()
|
70 |
+
return df
|