Spaces:
Running
Running
File size: 12,411 Bytes
01664b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
from typing import Callable, Dict, List, Optional, Tuple, Union
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
from torch.cuda.amp import autocast
from detectron2.config import configurable
from detectron2.layers import Conv2d, DeformConv, ShapeSpec, get_norm
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
from ..transformer_decoder.position_encoding import PositionEmbeddingSine
from ..transformer_decoder.transformer import TransformerEncoder, TransformerEncoderLayer, _get_clones, _get_activation_fn
def build_pixel_decoder(cfg, input_shape):
"""
Build a pixel decoder from `cfg.MODEL.MASK_FORMER.PIXEL_DECODER_NAME`.
"""
name = cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME
model = SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape)
forward_features = getattr(model, "forward_features", None)
if not callable(forward_features):
raise ValueError(
"Only SEM_SEG_HEADS with forward_features method can be used as pixel decoder. "
f"Please implement forward_features for {name} to only return mask features."
)
return model
# This is a modified FPN decoder.
@SEM_SEG_HEADS_REGISTRY.register()
class BasePixelDecoder(nn.Module):
@configurable
def __init__(
self,
input_shape: Dict[str, ShapeSpec],
*,
conv_dim: int,
mask_dim: int,
norm: Optional[Union[str, Callable]] = None,
):
"""
NOTE: this interface is experimental.
Args:
input_shape: shapes (channels and stride) of the input features
conv_dims: number of output channels for the intermediate conv layers.
mask_dim: number of output channels for the final conv layer.
norm (str or callable): normalization for all conv layers
"""
super().__init__()
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
feature_channels = [v.channels for k, v in input_shape]
lateral_convs = []
output_convs = []
use_bias = norm == ""
for idx, in_channels in enumerate(feature_channels):
if idx == len(self.in_features) - 1:
output_norm = get_norm(norm, conv_dim)
output_conv = Conv2d(
in_channels,
conv_dim,
kernel_size=3,
stride=1,
padding=1,
bias=use_bias,
norm=output_norm,
activation=F.relu,
)
weight_init.c2_xavier_fill(output_conv)
self.add_module("layer_{}".format(idx + 1), output_conv)
lateral_convs.append(None)
output_convs.append(output_conv)
else:
lateral_norm = get_norm(norm, conv_dim)
output_norm = get_norm(norm, conv_dim)
lateral_conv = Conv2d(
in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm
)
output_conv = Conv2d(
conv_dim,
conv_dim,
kernel_size=3,
stride=1,
padding=1,
bias=use_bias,
norm=output_norm,
activation=F.relu,
)
weight_init.c2_xavier_fill(lateral_conv)
weight_init.c2_xavier_fill(output_conv)
self.add_module("adapter_{}".format(idx + 1), lateral_conv)
self.add_module("layer_{}".format(idx + 1), output_conv)
lateral_convs.append(lateral_conv)
output_convs.append(output_conv)
# Place convs into top-down order (from low to high resolution)
# to make the top-down computation in forward clearer.
self.lateral_convs = lateral_convs[::-1]
self.output_convs = output_convs[::-1]
self.mask_dim = mask_dim
self.mask_features = Conv2d(
conv_dim,
mask_dim,
kernel_size=3,
stride=1,
padding=1,
)
weight_init.c2_xavier_fill(self.mask_features)
self.maskformer_num_feature_levels = 3 # always use 3 scales
@classmethod
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
ret = {}
ret["input_shape"] = {
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
}
ret["conv_dim"] = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
ret["norm"] = cfg.MODEL.SEM_SEG_HEAD.NORM
return ret
def forward_features(self, features):
multi_scale_features = []
num_cur_levels = 0
# Reverse feature maps into top-down order (from low to high resolution)
for idx, f in enumerate(self.in_features[::-1]):
x = features[f]
lateral_conv = self.lateral_convs[idx]
output_conv = self.output_convs[idx]
if lateral_conv is None:
y = output_conv(x)
else:
cur_fpn = lateral_conv(x)
# Following FPN implementation, we use nearest upsampling here
y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
y = output_conv(y)
if num_cur_levels < self.maskformer_num_feature_levels:
multi_scale_features.append(y)
num_cur_levels += 1
return self.mask_features(y), None, multi_scale_features
def forward(self, features, targets=None):
logger = logging.getLogger(__name__)
logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
return self.forward_features(features)
class TransformerEncoderOnly(nn.Module):
def __init__(
self,
d_model=512,
nhead=8,
num_encoder_layers=6,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,
):
super().__init__()
encoder_layer = TransformerEncoderLayer(
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
)
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
self._reset_parameters()
self.d_model = d_model
self.nhead = nhead
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src, mask, pos_embed):
# flatten NxCxHxW to HWxNxC
bs, c, h, w = src.shape
src = src.flatten(2).permute(2, 0, 1)
pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
if mask is not None:
mask = mask.flatten(1)
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
return memory.permute(1, 2, 0).view(bs, c, h, w)
# This is a modified FPN decoder with extra Transformer encoder that processes the lowest-resolution feature map.
@SEM_SEG_HEADS_REGISTRY.register()
class TransformerEncoderPixelDecoder(BasePixelDecoder):
@configurable
def __init__(
self,
input_shape: Dict[str, ShapeSpec],
*,
transformer_dropout: float,
transformer_nheads: int,
transformer_dim_feedforward: int,
transformer_enc_layers: int,
transformer_pre_norm: bool,
conv_dim: int,
mask_dim: int,
norm: Optional[Union[str, Callable]] = None,
):
"""
NOTE: this interface is experimental.
Args:
input_shape: shapes (channels and stride) of the input features
transformer_dropout: dropout probability in transformer
transformer_nheads: number of heads in transformer
transformer_dim_feedforward: dimension of feedforward network
transformer_enc_layers: number of transformer encoder layers
transformer_pre_norm: whether to use pre-layernorm or not
conv_dims: number of output channels for the intermediate conv layers.
mask_dim: number of output channels for the final conv layer.
norm (str or callable): normalization for all conv layers
"""
super().__init__(input_shape, conv_dim=conv_dim, mask_dim=mask_dim, norm=norm)
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
feature_strides = [v.stride for k, v in input_shape]
feature_channels = [v.channels for k, v in input_shape]
in_channels = feature_channels[len(self.in_features) - 1]
self.input_proj = Conv2d(in_channels, conv_dim, kernel_size=1)
weight_init.c2_xavier_fill(self.input_proj)
self.transformer = TransformerEncoderOnly(
d_model=conv_dim,
dropout=transformer_dropout,
nhead=transformer_nheads,
dim_feedforward=transformer_dim_feedforward,
num_encoder_layers=transformer_enc_layers,
normalize_before=transformer_pre_norm,
)
N_steps = conv_dim // 2
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
# update layer
use_bias = norm == ""
output_norm = get_norm(norm, conv_dim)
output_conv = Conv2d(
conv_dim,
conv_dim,
kernel_size=3,
stride=1,
padding=1,
bias=use_bias,
norm=output_norm,
activation=F.relu,
)
weight_init.c2_xavier_fill(output_conv)
delattr(self, "layer_{}".format(len(self.in_features)))
self.add_module("layer_{}".format(len(self.in_features)), output_conv)
self.output_convs[0] = output_conv
@classmethod
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
ret = super().from_config(cfg, input_shape)
ret["transformer_dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT
ret["transformer_nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
ret["transformer_dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
ret[
"transformer_enc_layers"
] = cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS # a separate config
ret["transformer_pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM
return ret
def forward_features(self, features):
multi_scale_features = []
num_cur_levels = 0
# Reverse feature maps into top-down order (from low to high resolution)
for idx, f in enumerate(self.in_features[::-1]):
x = features[f]
lateral_conv = self.lateral_convs[idx]
output_conv = self.output_convs[idx]
if lateral_conv is None:
transformer = self.input_proj(x)
pos = self.pe_layer(x)
transformer = self.transformer(transformer, None, pos)
y = output_conv(transformer)
# save intermediate feature as input to Transformer decoder
transformer_encoder_features = transformer
else:
cur_fpn = lateral_conv(x)
# Following FPN implementation, we use nearest upsampling here
y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
y = output_conv(y)
if num_cur_levels < self.maskformer_num_feature_levels:
multi_scale_features.append(y)
num_cur_levels += 1
return self.mask_features(y), transformer_encoder_features, multi_scale_features
def forward(self, features, targets=None):
logger = logging.getLogger(__name__)
logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
return self.forward_features(features)
|