File size: 24,767 Bytes
01664b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py
"""
MaskFormer criterion.
"""
import logging

import torch
import torch.nn.functional as F
from torch import nn

from detectron2.utils.comm import get_world_size
from detectron2.projects.point_rend.point_features import (
    get_uncertain_point_coords_with_randomness,
    point_sample,
)

from ..utils.misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list, _max_by_axis
from ..utils.tranform import matrix_to_quaternion, quaternion_to_matrix

def dice_loss(
        inputs: torch.Tensor,
        targets: torch.Tensor,
        num_masks: float,
    ):
    """
    Compute the DICE loss, similar to generalized IOU for masks
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    """
    inputs = inputs.sigmoid()
    inputs = inputs.flatten(1)
    numerator = 2 * (inputs * targets).sum(-1)
    denominator = inputs.sum(-1) + targets.sum(-1)
    loss = 1 - (numerator + 1) / (denominator + 1)
    return loss.sum() / num_masks


dice_loss_jit = torch.jit.script(
    dice_loss
)  # type: torch.jit.ScriptModule


def sigmoid_ce_loss(
        inputs: torch.Tensor,
        targets: torch.Tensor,
        num_masks: float,
    ):
    """
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    Returns:
        Loss tensor
    """
    loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")

    return loss.mean(1).sum() / num_masks


sigmoid_ce_loss_jit = torch.jit.script(
    sigmoid_ce_loss
)  # type: torch.jit.ScriptModule


def calculate_uncertainty(logits):
    """
    We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
        foreground class in `classes`.
    Args:
        logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or
            class-agnostic, where R is the total number of predicted masks in all images and C is
            the number of foreground classes. The values are logits.
    Returns:
        scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
            the most uncertain locations having the highest uncertainty score.
    """
    assert logits.shape[1] == 1
    gt_class_logits = logits.clone()
    return -(torch.abs(gt_class_logits))

def convert_to_filled_tensor(tensor_list):
    max_size = _max_by_axis([list(tensor.shape) for tensor in tensor_list])
    batch_shape = [len(tensor_list)] + max_size
    dtype = tensor_list[0].dtype
    device = tensor_list[0].device
    filled_tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
    for old, new in zip(tensor_list, filled_tensor):
        new[:old.shape[0]] = old
    return filled_tensor

def smooth_l1_loss(
    input: torch.Tensor, target: torch.Tensor, beta: float, reduction: str = "none"
) -> torch.Tensor:
    """
    Smooth L1 loss defined in the Fast R-CNN paper as:
    ::
                      | 0.5 * x ** 2 / beta   if abs(x) < beta
        smoothl1(x) = |
                      | abs(x) - 0.5 * beta   otherwise,

    where x = input - target.

    Smooth L1 loss is related to Huber loss, which is defined as:
    ::
                    | 0.5 * x ** 2                  if abs(x) < beta
         huber(x) = |
                    | beta * (abs(x) - 0.5 * beta)  otherwise

    Smooth L1 loss is equal to huber(x) / beta. This leads to the following
    differences:

     - As beta -> 0, Smooth L1 loss converges to L1 loss, while Huber loss
       converges to a constant 0 loss.
     - As beta -> +inf, Smooth L1 converges to a constant 0 loss, while Huber loss
       converges to L2 loss.
     - For Smooth L1 loss, as beta varies, the L1 segment of the loss has a constant
       slope of 1. For Huber loss, the slope of the L1 segment is beta.

    Smooth L1 loss can be seen as exactly L1 loss, but with the abs(x) < beta
    portion replaced with a quadratic function such that at abs(x) = beta, its
    slope is 1. The quadratic segment smooths the L1 loss near x = 0.

    Args:
        input (Tensor): input tensor of any shape
        target (Tensor): target value tensor with the same shape as input
        beta (float): L1 to L2 change point.
            For beta values < 1e-5, L1 loss is computed.
        reduction: 'none' | 'mean' | 'sum'
                 'none': No reduction will be applied to the output.
                 'mean': The output will be averaged.
                 'sum': The output will be summed.

    Returns:
        The loss with the reduction option applied.

    Note:
        PyTorch's builtin "Smooth L1 loss" implementation does not actually
        implement Smooth L1 loss, nor does it implement Huber loss. It implements
        the special case of both in which they are equal (beta=1).
        See: https://pytorch.org/docs/stable/nn.html#torch.nn.SmoothL1Loss.
    """
    if beta < 1e-5:
        # if beta == 0, then torch.where will result in nan gradients when
        # the chain rule is applied due to pytorch implementation details
        # (the False branch "0.5 * n ** 2 / 0" has an incoming gradient of
        # zeros, rather than "no gradient"). To avoid this issue, we define
        # small values of beta to be exactly l1 loss.
        loss = torch.abs(input - target)
    else:
        n = torch.abs(input - target)
        cond = n < beta
        loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta)

    if reduction == "mean":
        loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum()
    elif reduction == "sum":
        loss = loss.sum()
    return loss

class SetCriterion(nn.Module):
    """This class computes the loss for DETR.
    The process happens in two steps:
        1) we compute hungarian assignment between ground truth boxes and the outputs of the model
        2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
    """

    def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses,
                 num_points, oversample_ratio, importance_sample_ratio, motionnet_type, only_DET):
        """Create the criterion.
        Parameters:
            num_classes: number of object categories, omitting the special no-object category
            matcher: module able to compute a matching between targets and proposals
            weight_dict: dict containing as key the names of the losses and as values their relative weight.
            eos_coef: relative classification weight applied to the no-object category
            losses: list of all the losses to be applied. See get_loss for list of available losses.
        """
        super().__init__()
        self.num_classes = num_classes
        self.matcher = matcher
        self.weight_dict = weight_dict
        self.eos_coef = eos_coef
        self.losses = losses
        empty_weight = torch.ones(self.num_classes + 1)
        empty_weight[-1] = self.eos_coef
        self.register_buffer("empty_weight", empty_weight)

        # pointwise mask loss parameters
        self.num_points = num_points
        self.oversample_ratio = oversample_ratio
        self.importance_sample_ratio = importance_sample_ratio

        # OPD
        self.motionnet_type = motionnet_type
        self.only_DET = only_DET

    def loss_labels(self, outputs, targets, indices, num_masks):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        """
        assert "pred_logits" in outputs
        src_logits = outputs["pred_logits"].float()

        idx = self._get_src_permutation_idx(indices)
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(
            src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
        )
        target_classes[idx] = target_classes_o
        loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
        losses = {"loss_ce": loss_ce}
        return losses

    # OPD
    def loss_mtypes(self, outputs, targets, indices, num_masks):
        assert "pred_mtypes" in outputs

        src_idx = self._get_src_permutation_idx(indices)
        tgt_idx = self._get_tgt_permutation_idx(indices)

        target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
        src_mtypes = outputs["pred_mtypes"][src_idx][target_motion_valid]
        target_mtypes = convert_to_filled_tensor([t["gt_types"] for t in targets])[tgt_idx][target_motion_valid]

        if src_mtypes.shape[0] == 0:
            return {"loss_mtype": 0.0 * src_mtypes.sum()}

        loss_mtype = F.cross_entropy(src_mtypes, target_mtypes.long(), reduction="sum") / num_masks
        losses = {"loss_mtype": loss_mtype}
        return losses

    def loss_morigins(self, outputs, targets, indices, num_masks):
        assert "pred_morigins" in outputs

        src_idx = self._get_src_permutation_idx(indices)
        tgt_idx = self._get_tgt_permutation_idx(indices)

        target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
        # Only calculate origin loss for the rotation axis
        target_mtypes = convert_to_filled_tensor([t["gt_types"] for t in targets])[tgt_idx][target_motion_valid]
        rot_inds = (
                (target_mtypes == 0).nonzero().unbind(1)[0]
            )
        src_morigins = outputs["pred_morigins"][src_idx][target_motion_valid][rot_inds]
        target_morigins = convert_to_filled_tensor([t["gt_origins"] for t in targets])[tgt_idx][target_motion_valid][rot_inds]

        if src_morigins.shape[0] == 0:
            return {"loss_morigin": 0.0 * src_morigins.sum()}

        loss_morigin = smooth_l1_loss(src_morigins, target_morigins, 1.0, reduction="sum") / num_masks
        losses = {"loss_morigin": loss_morigin}
        return losses

    def loss_maxises(self, outputs, targets, indices, num_masks):
        assert "pred_maxises" in outputs

        src_idx = self._get_src_permutation_idx(indices)
        tgt_idx = self._get_tgt_permutation_idx(indices)

        target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
        src_maxises = outputs["pred_maxises"][src_idx][target_motion_valid]
        target_maxises = convert_to_filled_tensor([t["gt_axises"] for t in targets])[tgt_idx][target_motion_valid]

        if src_maxises.shape[0] == 0:
            return {"loss_maxis": 0.0 * src_maxises.sum()}

        loss_maxis = smooth_l1_loss(src_maxises, target_maxises, 1.0, reduction="sum") / num_masks
        losses = {"loss_maxis": loss_maxis}
        return losses
    
    #TODO: add loss for motion state
    def loss_mstates(self, outputs, targets, indices, num_masks):
        assert "pred_mstates" in outputs

        src_idx = self._get_src_permutation_idx(indices)
        tgt_idx = self._get_tgt_permutation_idx(indices)

        target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
        src_mstate = outputs["pred_mstates"][src_idx][target_motion_valid]
        target_mstate = convert_to_filled_tensor([t["gt_states"] for t in targets])[tgt_idx][target_motion_valid]

        if src_mstate.shape[0] == 0:
            return {"loss_mstate": 0.0 * src_mstate.sum()}

        loss_mstate = smooth_l1_loss(src_mstate, target_mstate, 1.0, reduction="sum") / num_masks
        losses = {"loss_mstate": loss_mstate}
        return losses
    
    def loss_mstatemaxs(self, outputs, targets, indices, num_masks):
        assert "pred_mstatemaxs" in outputs

        src_idx = self._get_src_permutation_idx(indices)
        tgt_idx = self._get_tgt_permutation_idx(indices)

        target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
        src_mstatemax = outputs["pred_mstatemaxs"][src_idx][target_motion_valid]
        target_mstatemax = convert_to_filled_tensor([t["gt_statemaxs"] for t in targets])[tgt_idx][target_motion_valid]

        if src_mstatemax.shape[0] == 0:
            return {"loss_mstatemax": 0.0 * src_mstatemax.sum()}

        loss_mstatemax = smooth_l1_loss(src_mstatemax, target_mstatemax, 1.0, reduction="sum") / num_masks
        losses = {"loss_mstatemax": loss_mstatemax}
        return losses

    def loss_extrinsics(self, outputs, targets, indices, num_masks):
        assert "pred_extrinsics" in outputs
        if self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V6":
            target_motion_valid = torch.tensor([t["gt_motion_valids"][0] for t in targets], device=outputs["pred_extrinsics"].device)
            src_extrinsics = outputs["pred_extrinsics"][target_motion_valid]
            target_extrinsics_full = [t["gt_extrinsic"][0] for t in targets]
            target_extrinsics = convert_to_filled_tensor([torch.cat(
                                [
                                    extrinsic[0:3],
                                    extrinsic[4:7],
                                    extrinsic[8:11],
                                    extrinsic[12:15],
                                ],
                                0,
                            ) for extrinsic in target_extrinsics_full])[target_motion_valid]
            if src_extrinsics.shape[0] == 0:
                return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}

            # Much proper to make sure each valid image gives the same contribution to the loss
            # Therefore, here use the number of images to average
            loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / outputs["pred_extrinsics"].shape[0]
        elif self.motionnet_type == "BMOC_V1":
            src_idx = self._get_src_permutation_idx(indices)
            tgt_idx = self._get_tgt_permutation_idx(indices)

            target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
            src_extrinsics = outputs["pred_extrinsics"][src_idx][target_motion_valid]
            target_extrinsics_full = []
            for t in targets:
                extrinsics = t["gt_extrinsic"]
                target_extrinsics_full.append(torch.cat(
                                [
                                    extrinsics[:, 0:3],
                                    extrinsics[:, 4:7],
                                    extrinsics[:, 8:11],
                                    extrinsics[:, 12:15],
                                ],
                                1,
                            ))

            target_extrinsics = convert_to_filled_tensor(target_extrinsics_full)[tgt_idx][target_motion_valid]
            if src_extrinsics.shape[0] == 0:
                return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}

            # Much proper to make sure each valid image gives the same contribution to the loss
            # Therefore, here use the number of images to average
            loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / num_masks
        elif self.motionnet_type == "BMOC_V2":
            src_idx = self._get_src_permutation_idx(indices)
            tgt_idx = self._get_tgt_permutation_idx(indices)

            target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
            src_extrinsics = outputs["pred_extrinsics"][src_idx][target_motion_valid]
            target_extrinsics = convert_to_filled_tensor([t["gt_extrinsic_quaternion"] for t in targets])[tgt_idx][target_motion_valid]

            if src_extrinsics.shape[0] == 0:
                return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}

            # Much proper to make sure each valid image gives the same contribution to the loss
            # Therefore, here use the number of images to average
            loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / num_masks
        elif self.motionnet_type == "BMOC_V3":
            src_idx = self._get_src_permutation_idx(indices)
            tgt_idx = self._get_tgt_permutation_idx(indices)

            target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
            src_extrinsics = outputs["pred_extrinsics"][src_idx][target_motion_valid]
            target_extrinsics = convert_to_filled_tensor([t["gt_extrinsic_6d"] for t in targets])[tgt_idx][target_motion_valid]

            if src_extrinsics.shape[0] == 0:
                return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}

            # Much proper to make sure each valid image gives the same contribution to the loss
            # Therefore, here use the number of images to average
            loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / num_masks
        elif self.motionnet_type == "BMOC_V4"  or self.motionnet_type == "BMOC_V5":
            target_motion_valid = torch.tensor([t["gt_motion_valids"][0] for t in targets], device=outputs["pred_extrinsics"].device)
            src_extrinsics = outputs["pred_extrinsics"][target_motion_valid]
            target_extrinsics = convert_to_filled_tensor([t["gt_extrinsic_quaternion"][0] for t in targets])[target_motion_valid]

            if src_extrinsics.shape[0] == 0:
                return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}

            # Much proper to make sure each valid image gives the same contribution to the loss
            # Therefore, here use the number of images to average
            loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / outputs["pred_extrinsics"].shape[0]
        
        return {"loss_extrinsic": loss_extrinsic}
            

    
    def loss_masks(self, outputs, targets, indices, num_masks):
        """Compute the losses related to the masks: the focal loss and the dice loss.
        targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
        """
        assert "pred_masks" in outputs

        src_idx = self._get_src_permutation_idx(indices)
        tgt_idx = self._get_tgt_permutation_idx(indices)
        src_masks = outputs["pred_masks"]
        src_masks = src_masks[src_idx]
        masks = [t["masks"] for t in targets]
        target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
        target_masks = target_masks.to(src_masks)
        target_masks = target_masks[tgt_idx]

        # No need to upsample predictions as we are using normalized coordinates :)
        # N x 1 x H x W
        src_masks = src_masks[:, None]
        target_masks = target_masks[:, None]

        with torch.no_grad():
            # sample point_coords
            point_coords = get_uncertain_point_coords_with_randomness(
                src_masks,
                lambda logits: calculate_uncertainty(logits),
                self.num_points,
                self.oversample_ratio,
                self.importance_sample_ratio,
            )
            # get gt labels
            point_labels = point_sample(
                target_masks,
                point_coords,
                align_corners=False,
            ).squeeze(1)

        point_logits = point_sample(
            src_masks,
            point_coords,
            align_corners=False,
        ).squeeze(1)

        losses = {
            "loss_mask": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks),
            "loss_dice": dice_loss_jit(point_logits, point_labels, num_masks),
        }

        del src_masks
        del target_masks
        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, indices, num_masks):
        tmp_device = outputs["pred_logits"].device
        tmp_list = ["mtypes", "morigins", "maxises"]
        loss_map = {
            'labels': self.loss_labels,
            'masks': self.loss_masks,
            # OPD
            "mtypes": self.loss_mtypes,
            "morigins": self.loss_morigins,
            "maxises": self.loss_maxises,
            "extrinsics": self.loss_extrinsics,
            "mstates": self.loss_mstates,
            "mstatemaxs": self.loss_mstatemaxs,
        }
        assert loss in loss_map, f"do you really want to compute {loss} loss?"
        tmp_loss = loss_map[loss](outputs, targets, indices, num_masks)
        if self.only_DET and loss in tmp_list:
            tmp_key = list(tmp_loss.keys())[0]
            tmp_loss[tmp_key] = torch.tensor(0.0, device=tmp_device)
            return tmp_loss
        else:
            return tmp_loss
        # return loss_map[loss](outputs, targets, indices, num_masks)

    def forward(self, outputs, targets):
        """This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        tmp_device = outputs["pred_logits"].device
        outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}

        # Retrieve the matching between the outputs of the last layer and the targets
        indices = self.matcher(outputs_without_aux, targets)

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_masks = sum(len(t["labels"]) for t in targets)
        num_masks = torch.as_tensor(
            [num_masks], dtype=torch.float, device=next(iter(outputs.values())).device
        )
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_masks)
        num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            if loss == "extrinsics" and self.motionnet_type == "BMCC":
                    continue
            losses.update(self.get_loss(loss, outputs, targets, indices, num_masks))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if "aux_outputs" in outputs:
            for i, aux_outputs in enumerate(outputs["aux_outputs"]):
                indices = self.matcher(aux_outputs, targets)
                for loss in self.losses:
                    if loss == "extrinsics" and (self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMCC"):
                        continue
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks)
                    l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses

    def __repr__(self):
        head = "Criterion " + self.__class__.__name__
        body = [
            "matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
            "losses: {}".format(self.losses),
            "weight_dict: {}".format(self.weight_dict),
            "num_classes: {}".format(self.num_classes),
            "eos_coef: {}".format(self.eos_coef),
            "num_points: {}".format(self.num_points),
            "oversample_ratio: {}".format(self.oversample_ratio),
            "importance_sample_ratio: {}".format(self.importance_sample_ratio),
        ]
        _repr_indent = 4
        lines = [head] + [" " * _repr_indent + line for line in body]
        return "\n".join(lines)